Multi-photon Entanglement
UV enhancement cavity with downconversion crystal inside.
With this approach we have observed a four-photon cluster state, a family of four-photon entangled states including the GHZ state, and the four- and six-photon symmetric entangled Dicke states. These states are essential for several quantum information applications like one-way quantum computation (cluster states), quantum metrology (GHZ and Dicke states) or as quantum simulators for anyonic statistics (GHZ state). We have realized proof-of-principle demonstrations of the aforementioned applications.
Experimental setup for observation of the 6-photon Dicke state.
Further, the entanglement of the experimentally observed states has to be verified as well as particular entanglement properties have to be characterized. To this end, ideally, a full reconstruction of the density matrix can be used, which we have realized for the four-qubit Dicke state and for the whole family of entangled four-qubit states. However, due to the exponential growth of the required measurements with an increasing number of qubits, tools have to be developed, which provide partial information of the state. This aspect is also studied in our group.