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Abstract

Bohmian mechanics is one of many alternative interpretations of quantum me-
chanics. Attributing a definite position to particles at all times it allows the
introduction of particle trajectories, which are forbidden in orthodox quantum
mechanics. In order to investigate the non-locality of this theory we are imple-
menting an experiment where one photon, initially entangled with another photon,
is sent through a double slit apparatus, where its average Bohmian trajectory can
be observed. This will enable us to analyze different cases where the state and
possible evolution of the interfering photon depend on the observation of the sec-
ond photon.

The work in this thesis focuses on the creation of an entangled photon source,
where the entanglement is created via spontaneous parametric down conversion
in a PPKTP crystal and the special arrangement of birefringent crystals which
results in a Bell state, entangled in polarization. The double slit setup is also built
exploiting the anisotropy of birefringent crystals, which separate a single incoming
beam into two orthogonally polarized ones, such that the photon’s which-way-
information depends on its initial polarization or the observation of the entangled
photon, respectively. The average trajectories in the interference region can be
measured via weak measurement. This technique makes it possible to obtain infor-
mation about the system without changing it significantly. This is at the expense
of the amount of information obtained, so that a large number of such measure-
ments is needed. By varying the point in time of the polarization-measurement
of the second photon, delayed choice measurements can be performed.

Average trajectories have already been measured in experiments and are shown
to correspond with those calculated in the Bohmian theory. Nevertheless, the
meaning of average trajectories and Bohmian mechanics is much discussed. This
experiment will soon contribute to a better understanding of this theory.
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Introduction

Since the discovery of quantum phenomena in the beginning of the 20th century
there was an ongoing debate about different interpretations of quantum theory.
Finally, standard quantum mechanics (SQM) with the Copenhagen interpretation
became the most accepted theory. Nevertheless, most of the alternative theories
were never disproved and are still vivid. One among these is Bohmian mechanics
(BM) [1, 2], a non-local realistic theory which owes its realism to the introduc-
tion of the particle positions as hidden variables. In contrast to the probabilistic
Copenhagen interpretation BM is governed by determinism. Thus, the theory
is able to satisfy the desire for a non-probabilistic and realistic quantum theory
which was expressed by many physicists.

Even though all imaginable experiments lead to the same results as in SQM
when considered in the Bohmian theory, the way of explaining the occurrence of
the results is different, leading to new perspectives on well-known experiments.
The most controversial experiment since the early days of quantum mechanics has
always been the double-slit interferometer, holding the “mystery” [3] of quantum
mechanics. Therein, the different interpretations of quantum mechanics also be-
come clear. While SQM bases the observation of the interference pattern on the
wave-particle duality, in BM it appears because actual quantum particles, which
are following trajectories guided by the wavefunction, arrive at a determined po-
sition at the screen, resulting in an interference pattern.

Inspired by a gedanken experiment from 1992 [4], the average Bohmian trajec-
tories in a double slit were observed by an quantum optical implementation of
the theory of weak measurements [5, 6], while which-way measurements on the
involved particles were performed [7], leading to a deeper understanding of the
Bohmian theory. Nevertheless, which-way measurements on particles in the in-
terference region have never been actually performed.

The experiment related to this thesis performs such kind of measurement, in-
vestigating the non-locality of BM: a polarizationally entangled photon pair is
separated such that one photon is entering a double slit, where its trajectories are
observed. The interferometer is constructed in a manner that the traversed slit
is entangled with the polarization of the second photon. On this second photon,
outside the double slit interferometer, polarization measurements are performed,
realizing which-way measurements on the photon traversing the slits and the inter-
ference region. Since the moment of the polarization measurement on the second
photon can be chosen arbitrarily with respect to the first particle crossing the
interference region, this experiment enables to switch between interfering and non
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Introduction

interfering measurement scenarios and makes delayed choice experiments possible.
For this an efficient entangled photon source is required, the implementation of
which will be the main aim of this thesis.

The thesis begins with an introduction to SQM, quantum measurement and
especially the weak value formalism in order to provide a basis for the follow-
ing considerations. This is followed by an explanation of Bohmian theory as
an alternative of SQM and the double slit experiment in this context. Further-
more, different possibilities to observe Bohmian trajectories are investigated. The
next chapter then treats the experimental realization of the setup with a special
focus on the implementation of the photon source, producing the pairs of polar-
izationally entangled photons later sent to the double slit and the polarization
measurement. This is why the following chapter explains the techniques used for
a proper alignment of the source and occurring difficulties. It also contains the
final state tomography, characterizing the generated Bell state.
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1 Standard quantum mechanics
and quantum measurement

In order to provide a conceptual mathematical foundation for this thesis, in this
chapter a brief summary about the fundamental concepts of standard quantum
mechanics (SQM) is given, mainly based on [8–10]. Special attention is paid to
quantum measurements in order to later derive the weak value formalism.

1.1 Fundamentals of quantum mechanics

1.1.1 Quantum states in a hilbert space

Hilbert space A Hilbert space H is a complex vector space, whose dimension is
specified by the physical nature of the system under consideration, with an inner
product 〈·, ·〉, which is complete. A physical state is represented by a state vector
in an Hilbert space and is called, according to Dirac [11], a ket |v〉 ∈ H.

Those state vectors contain complete information about the physical state, and
all linear combinations of the elements{|vi〉} ∈ H are again elements of the same
vector space

|w〉 =
∑

ci|vi〉 ∈ H, ci ∈ C, (1.1)

from which it can be deduced that any superposition of states is another possible
state of the quantum system, the so called superposition principle.

The inner product 〈v, w〉 between two elements of the Hilbert space |v〉 and |w〉
is written as

〈v, w〉 := 〈v|w〉, (1.2)

where the bra vector 〈v| is the element of the dual space corresponding to |v〉. The
inner product hast to be linear in the second argument, skew-symmetric, which
means that 〈v|w〉 is the complex conjugate to 〈w|v〉, and positive semi-definite
〈v|v〉 ≥ 0, which only becomes zero when |v〉 = 0.

This induces firstly that two elements of a Hilbert space are orthogonal if and
only if their inner product 〈v|w〉 = 0 and, secondly, that the norm |||v〉|| is defined
via

|||v〉|| :=
√
〈v|v〉. (1.3)

Therefore, any non-zero vector can be normalized by dividing it by its norm. [12]

3



1 Standard quantum mechanics and quantum measurement

It is also possible to express a state of an infinite-dimensional Hilbert space in
terms of a continuous basis {|x〉}

|u〉 =

∫
dxf(x)|x〉, (1.4)

where in comparison to Eq. (1.1) the sum over the complex amplitudes ci and
the discrete basis is exchanged by an integral over the continuous space of the
wavefunction f(x) often denoted with ψ(x) = 〈ψ|x〉.

Operators Another important class of objects are linear operators Â represent-
ing functions Â : H → H which are linear in their inputs and act on states of the
Hilbertspace

Â

(∑
i

ci|vi〉

)
=
∑
i

ciÂ|vi〉. (1.5)

The adjoint A† is defined via the dual space with

Â|v〉 ↔ 〈v|Â†. (1.6)

The addition of operators is commutative, associative and, in general, the commu-
tator of two linear operators [Â, B̂] = ÂB̂− B̂Â is nonzero and the unity operator
11 is defined as 11|v〉 = |v〉.

Furthermore, an eigenstate |a〉 of an operator Â, which plays an important role
especially for quantum measurement, is defined together with its corresponding
eigenvalue a via

Â|a〉 = a|a〉. (1.7)

The subspace of H spanned by all eigenvectors of Â with one particular eigenvalue
is called an eigenspace of operator Â corresponding to this certain eigenvalue.

There are different kinds of linear operators. Physical observables are repre-
sented by linear hermitian operators Ô, where Ô = Ô† has only real eigenvalues.
A special kind of observable is the so called projector Π̂, which is a bounded her-
mitian operator with eigenvalues only 0 and 1; it is characterized by Π̂2 = Π̂ = Π̂†.

Evolution of a quantum state A state of a closed quantum system evolving
in time is described by the Schrödinger equation

i~
d|ψ〉
dt

= Ĥ|ψ〉, (1.8)

where ~ is Planck’s constant and Ĥ is the hamiltonian of the system, a hermitian
operator. The evolution of the system is hence described by a unitary operator Û
via

|ψ(t2)〉 = Û(t1, t2)|ψ(t1)〉 = e−
iĤ(t2−t1)

~ |ψ(t1)〉. (1.9)
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1.1 Fundamentals of quantum mechanics

Density matrix formalism Besides the description by a normalized state vec-
tor, quantum states can also be described by a density matrix. The density oper-
ator ρ̂ of a state |ψ〉 is

ρ̂ = |ψ〉〈ψ|. (1.10)

Density operators are by construction hermitian, positive semi-definite and have a
normalized trace tr(ρ̂) = 1. Moreover, density operators allow the representation
of mixed states, which cannot be described in terms of vector states. In the
state vector formalism quantum states can only be described completely by a
combination of quantum states, whereas in the density operator formalism also
scenarios where the physical state is in a statistical uncertainty can be described.
The state of the system is then not completely known but can still be represented
by a density matrix of the form

ρ̂ =
∑
i

Pi|ψi〉〈ψi|. (1.11)

Here Pi is the probability of the system to be in the state |ψi〉. States which com-
pletely describe the system can be expressed by state vectors or density operators
via an outer product as in Eq. (1.10) and are called pure states, while systems in
a state of statistical uncertainty are mixed states.

Qubit system A minimum quantum system is a quantum bit or qubit system
which is described by a 2-dimensional Hilbertspace with the principal orthonormal
basis states |0〉 and |1〉. In contrast to classical bits, which can only have the value
0 or 1, qubits can be – thanks to the superposition principle – in any normalized
superposition state

|ψ〉 = a|0〉+ β|1〉, (1.12)

with |a|2 + |β|2 = 1. Because of the normalization, it is also possible to write
Eq. (1.12) as

|ψ〉 = cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉. (1.13)

This state defines a point on the 3-dimensional Bloch-sphere (see Fig. 1.1). A
possible basis for linear operators acting on the qubits is {11, σ̂x, σ̂y, σ̂z} also often
indicated as {σ̂0, σ̂1, σ̂2, σ̂3}, where σ̂i denote the Pauli matrices

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂x =

(
1 0
0 −1

)
. (1.14)

With this, any qubit state can be decomposed in the density operator represen-
tation into a superposition of operators via

ρ̂ =
11 + nσ̂

2
, (1.15)

where nσ̂ =
∑

i niσ̂i and n is the state vector in the 3D Bloch sphere with
||n||2 ≤ 1, denoted as Bloch vector

n =

cos θ sinϕ
sin θ sinϕ

cos θ

 . (1.16)
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1 Standard quantum mechanics and quantum measurement

H
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Figure 1.1: Description of a stet |ψ〉 on the Bloch sphere via its polar angle ϕ
and its azimuthal angle θ.

It can be shown that the components ni correspond to the expectation value of a
measurement of 〈σ̂i〉. Pure states lie on the surface of the sphere and thus have
||n||2 = 1, whereas mixed states are inside it.

One possible physical realization of a qubit system is the polarization of light,
where the horizontal and vertical polarization are defined as basis states |0〉 := |H〉
and |1〉 := |V 〉. The second natural basis for linear polarization is the one of plus
and minus polarization

|P 〉 =
1√
2

(|H〉+ |V 〉)

|M〉 =
1√
2

(|H〉 − |V 〉).
(1.17)

Circular (left and right handed) polarized light, characterized by a phase difference
of π

2
, form the third natural basis.

|R〉 =
1√
2

(|H〉+ i|V 〉)

|L〉 =
1√
2

(|H〉 − i|V 〉).
(1.18)

As each basis provides the eigenstates of one of the Pauli operators, they are
representing the corresponding axis on the Bloch sphere. The eigen equations
read

σ̂x|P/M〉 = ±|P/M〉
σ̂y|R/L〉 = ±|R/L〉
σ̂z|H/V 〉 = ±|H/V 〉.

(1.19)
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1.1 Fundamentals of quantum mechanics

1.1.2 Composite systems

A composition of quantum systems can result in two different kinds of states.
Firstly, for a separable state the density matrix of a composed system is given by
a complex combination of product states ρ̂S =

∑
i Piρ̂

A
i ⊗ ρ̂Bi ⊗ ρ̂Ci ⊗ ..., which

simplifies for pure product states (Pi = 1) to ρ̂ABC... = ρ̂A ⊗ ρ̂B ⊗ ρ̂C ⊗ ... as the
state vector of the pure composite system is equivalent to the tensor product of
the component physical systems |Ψ〉prodABC... = |ψ〉A ⊗ |ψ〉B ⊗ |ψ〉C ⊗ .... Secondly,
entangled states cannot – in comparison to product or separable states – be de-
scribed by tensor products (|Ψ〉entABC... 6= |ψ〉A⊗|ψ〉B⊗|ψ〉C⊗ ...). These states are
not only composed states, but also share correlations. This phenomenon is purely
quantum and gave rise to a lot of discussion. The partial trace ρ̂A of the density
matrix of a composite system living in HC = HA ⊗HB describes the state of the
subsystem A

ρ̂A = trB(ρ̂C). (1.20)

It is interesting to see, that for a composite entangled state, the result of a partial
trace is always a mixed state in the subsystems.

Two qubits A composite system consisting of two qubits has four computa-
tional basis states. Sticking to the basis of polarized light {|H〉, |V 〉} they are
denoted as |HH〉, |HV 〉, |V V 〉, |V H〉. Therefore, a general pure two-qubit state
can be written as

|ψ〉 = a|HH〉+ β|HV 〉+ γ|V H〉+ δ|V V 〉 (1.21)

with the normalization condition |a|2 + |β|2 + |γ|2 + |δ|2 = 1. Dependent on
the coefficients this state can be either written with a tensor product or not and
therefore be a product state or an entangled state, respectively. [10, 13]

One important entangled state is for example one of the four Bell states

|ψ〉 =
1√
2

(|HH〉+ |V V 〉), (1.22)

where the two systems cannot be regarded separately and the outcomes of a mea-
surement performed on one single system will be correlated with the other one in
more than one basis.

Obviously, a basis for linear operators in this 4-dimensional Hilbertspace is
given by the tensor product combinations of the Pauli matrices σ̂i ⊗ σ̂j. As for
single qubit states there is also a way to express the density matrix of two qubits
in terms of the expectation values of the measurement in all basis directions:

ρ̂ =
11 +

∑
i,j Eijσ̂i ⊗ σ̂j

4
, i, j = 0, 1, 2, 3, (1.23)

where Eij are the expectation values of a global σ̂i ⊗ σ̂j measurement.

7



1 Standard quantum mechanics and quantum measurement

Entanglement measures There are different ways to define the degree of en-
tanglement, which will be important later in this work. One of them is the so
called negativity of a quantum state, directly connected to the PPT criterion.
First of all, the partial transpose of any quantum state ρ̂ ∈ HA ⊗HB

ρ̂ =
∑
ij

∑
kl

ρij,kl|i〉〈j||k〉〈l| (1.24)

is defined via
ρ̂ᵀA

∑
ij

∑
kl

= ρji,kl|i〉〈j||k〉〈l|, (1.25)

where the matrix elements in the space ofHA have been transposed. For separable
states ρ̂ ∈ HA ⊗ HB, which can be always written as a complex combination of
product states

ρ̂S =
∑
i

Piρ̂
A
i ⊗ ρ̂Bi , (1.26)

therefore holds that

ρ̂ᵀAS =
∑
i

Pi(ρ̂
A
i )ᵀ ⊗ ρ̂Bi =

∑
i

Pi ˜̂ρ
A
i ⊗ ρ̂Bi ≥ 0. (1.27)

Because ρAi is a density matrix its partial transpose has only non-negative eigenval-
ues resulting in a positive partial transpose (PPT) of the composite state. Hence
PPT criterion implies, that when ρ̂ᵀAS has at least one negative eigenvalue, ρ̂ is
guaranteed to be entangled. [14–17]

From this, the negativity N (ρ̂)is derived, which measures how much ρ̂ᵀA fails
to be PPT. The negativity is defined as the sum over the negative eigenvalues λi
of the partial transposed density operator ρ̂ᵀA

N (ρ̂) =
∑
λi<0

λi =
∑
i

|λi| − λi
2

. (1.28)

Therefore, a separable state, whose eigenvalues are only non-negative, has neg-
ativity N (ρ̂S) = 0, while the negativity of an entangled states is N (ρ̂E) > 0.
[14–17]

8



1.2 Quantum measurement

1.2 Quantum measurement

In order to obtain information about the microscopic physical quantities, mea-
surements have to be performed on the quantum states. Quantum measurements
are since the very beginning under investigation and controversially discussed in
the different interpretations of the theory. This section gives a brief summary
about how to perform quantum measurements and how they affect the state.

1.2.1 Projective measurement

When a quantum measurement is performed the possible outcomes of this mea-
surements are given by the eigenvalues of the measured observable. This restric-
tion of the possible measurement outcomes results in a finite discrete set of results
for measurements in a finite dimensional Hilbert space. The system state |ψ〉 can
be represented by a linear combination of eigenstates |ai〉 of the observable Â

|ψ〉 =
∑
i

ci|ai〉 =
∑
i

|ai〉〈ai|ψ〉. (1.29)

The measurement of observable Â also can be seen as a measurement in an or-
thonormal basis with a real value ai associated to each basis state |ai〉, such that
the observable is described by the set of projectors {|ai〉〈ai| := Π̂i}

Â =
∑
i

ai|ai〉〈ai|. (1.30)

That is why this ideal form of quantum measurement is also denoted as projective
measurement or strong measurement [18].

In a measurement of Â on a state |ψ〉 (1.29), which is not an eigenstate of Â, the
outcome can only be predicted probabilistically. The probability Pj for a result
aj associated with the state |aj〉 is given by

Pj = 〈ψ|Π̂j|ψ〉 = |〈aj|ψ〉|2 = |cj|2. (1.31)

and the expectation value of the measurement is given by [9]

〈Â〉ψ =
∑
j

ajPj = 〈ψ|Â|ψ〉. (1.32)

After the measurement with outcome aj the system is in state

|ψ′〉 =
Π̂j|ψ〉√
〈ψ|Π̂j|ψ〉

, (1.33)

which can be regarded as a collapse of the system into the corresponding eigen-
state. Consequently, a repetition of the same measurement results again in the
same state and outcome. [8–10]

9



1 Standard quantum mechanics and quantum measurement

1.2.2 Indirect measurement

To actually perform a measurement the system is brought in contact with a mea-
surement apparatus, which is read off after the measurement. It is von Neumann’s
model [19] which combines this physical measurement with projective measure-
ments and provides a basis for studies of quantum measurements and its general-
izations [18].

The main idea of the model is that due to the effect of interaction on the state
of the apparatus, the result of the measurement can be read off from the affected
apparatus degree of freedom, also called pointer variable. For its implementation,
the measurement apparatus is described by the canonically conjugate variables p̂
and q̂ with [q̂, p̂] = i~, where q̂ is referred to as the pointer variable in the following.

In a direct extension of von Neumann’s scheme [18], for a measurement of
observable Â the quantum system S and the measurement apparatus is coupled
via the interaction of the Hamiltonian

Ĥ = g(t)Â⊗ p̂ (1.34)

with the instantaneous coupling rate g(t) which differs from zero in the time
interval (ti, tf ). The initially (t ≤ ti) uncorrelated system- and apparatus state
(|Ψi〉 = |ψS〉 ⊗ |φM〉) then becomes correlated for times t ≥ tf by the unitary
transformation

Û = exp

(
− i
~
γÂ⊗ p̂

)
, (1.35)

where γ is the coupling strength

γ =

∫ tf

ti

g(t)dt (1.36)

resulting in the final state |Ψf〉 = Û(|ψS〉 ⊗ |φM〉).

Assuming Â has discrete and non-degenerate eigenvalues (1.30), it can be shown
that a measurement of the pointer variable q̂ at t ≥ tf provides information about
the system

|Ψf〉 = e−
i
~γÂ⊗p̂

∑
i

ci|ai〉 ⊗ |φM〉)

=
∑
i

ci|ai〉 ⊗ e−
i
~γaip̂|φM〉

=
∑
i

ci|ai〉 ⊗ |φγaiM 〉,

(1.37)

as the pointer states |φγaiM 〉 are rotated or shifted by the amount γai after the
measurement with respect to the initial ones. This can be seen for a continuous

10



1.2 Quantum measurement

pointer state by introducing the identity operator in the p- and q-basis and using
that 〈p|q〉 = 1√

2π~e
− i

~pq [8, 20].

|Ψf〉 =
∑
i

ci|ai〉
∫

q′

∫
p

dq′dpe−
i
~γaip|p〉〈p|q′〉〈q′|φM〉

=
1√
2π~

∑
i

ci|ai〉
∫

q′

∫
p

dq′dpe−
i
~p(γai+q′)|p〉φM(q′)

(1.38)

A measurement of the pointer variable q then results in

〈q|Ψf〉 =
1√
2π~

∑
i

ci|ai〉
∫

q′

∫
p

dq′dpe−
i
~p(γai+q′)〈q|p〉φM(q′)

=
∑
i

ci|ai〉
∫

q′
dq′
∫

p

dp
1

2π~
e−

i
~p(γai+q′−q)︸ ︷︷ ︸

δ(q′−(q−γai))

φM(q′)

=
∑
i

ci|ai〉φM(q − γai)︸ ︷︷ ︸
|φγaiM 〉

(1.39)

Strong measurement The system and pointer states are maximally correlated
when the pointer states are non-overlapping, i.e. when the |φγaiM 〉 are pairwise or-
thogonal [13]. Performing a projective measurement on the pointer state according
to the projector Π̂γai = 11 ⊗ |φγaiM 〉〈φ

γai
M | results in a pointer state shifted by γai

with probability PΦ
γai

PΦ
γai

= 〈ψf |Π̂γai |ψf〉 = |ci|2. (1.40)

This is the same as the probability of measuring ai in a projective measurement
directly on the system and explains why this choice of interaction Hamiltonian
yields to the ideal form of an indirect measurement, equivalent to a projective
measurement [9, 13].

Non-overlapping pointer states are a necessary requirement for this projective
measurement. It is realized when the coupling is sufficiently strong [18] which
is the case when the uncertainty ∆q =

√
〈q2〉 − 〈q〉2 is small compared to the

measurement strength
∆q � |γ|δa, (1.41)

where δa is the minimal distance between the different ai’s. For a single measure-
ment the pointer shift δq = γam is proportional to the specific result am of the
measurement of Â, and hence for multiple measurements the expectation value
of Â can be determined with high precision. After this type of measurement and
maximal gain of information the initial system state is destroyed and found now
in the corresponding eigenstate corresponding to Eq. (1.33).

Weak measurement In case the final pointer states |φγaiM 〉 are very similar,
such that the final state |Ψf〉 is almost separable, a single measurement provides
very little information and is called weak measurement. In weak measurements the
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1 Standard quantum mechanics and quantum measurement

uncertainty of the pointer variable has to be large compared to the measurement
strength [18]:

∆q � |γ|δa, (1.42)

where δa is now the maximum distance between between two consecutive aj.

It is still possible to measure the average value 〈Â〉 = 〈ψS|Â|ψS〉. From
Eq. (1.39)

γ〈Â〉 = 〈q̂f〉 − 〈q̂i〉 (1.43)

holds, where 〈q̂i〉 and 〈q̂i〉 are the expectation values of q at t = 0 and t ≥ tf
respectively.

Therefore, to obtain information about the system in form of 〈Â〉, measure-
ments on each member of a sufficiently large ensemble of systems prepared in the
same state have to be performed and then averaged over. Obviously the precision
of the measurement increases with increasing ensemble size and the errror of 〈Â〉
can be made arbitrary small [18]. The way of extracting 〈Â〉 differs conceptually
from the one of a projective measurement (1.32), where the expectation value is
obtained by the different probabilities for the different eigenvalues, whereas in a
weak measurement it is obtained directly from the pointer shift in equation (1.43)
without measuring each Pi individually.
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1.3 Pre- and postselected systems

1.3 Pre- and postselected systems

1.3.1 Two-state vector formalism

Until now the measurement together with the system state were only considered
in one direction of time. Even though the dynamical laws of SQM are time sym-
metric as its classical counterparts and the Hamiltonian defines the motion of the
system for all future and past times, there is a time asymmetry in SQM, which
arises from the standard measurement approach. The collapse of the system into
one of the observable’s eigenstates makes it impossible to make any general state-
ment about the state of the system immediately before the measurement; to evolve
back to the system state prior to the measurement [21].

In the two-state vector formalism additionally to the standard approach, where
the behavior of a system is studied assuming the knowledge of the state at some
initial time t1, the knowledge about the final state at some time t2 is added, such
that a system with fixed boundary conditions in the past and future given by two
complete measurements is regarded [18, 21]. In the intermediate time interval
at t ∈ [t1, t2] the system is completely symmetric under time reversal. The new
description of a quantum system at time t is the two-state vector

〈Φ| |Ψ〉, (1.44)

which consists of a quantum state |Ψ〉 defined by the results of measurements
performed on the system in the past at some time t1 and of a backward evolving
quantum state 〈Φ| defined by the results of measurements performed on this
system at some time t2 (see Fig. 1.2) [22].

t t2t1 tnow
PPS

Figure 1.2: Definition of a pre- and postselected system described by a two-state
vector [22].

Note that this definition of a quantum system yields, as the standard approach,
maximal information about how this system can affect other systems. The only
difference is the achieved symmetry. Whereas in the standard approach only the
results of the measurements in the past are relevant for the state of the system,
in the two-state vector formalism there is no preference to the results of measure-
ments in the past relative to the results of measurements in the future [22].

A system described by a two-state vector is called pre- and postselected system
(PPS). In order to have now at some time tnow a PPS, hence a system which is a
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1 Standard quantum mechanics and quantum measurement

two-state vector at some previous time t there should be a complete measurement
in the past of time t and a complete measurement after the time t [22] (see Fig. 1.2).

When the first measurement at some time t1 < t of an observable Â gives an
outcome a corresponding to the eigenstate |a〉 of Â, then the system will evolve
between t1 and t according to the unitary evolution

Û(t1, t) = e
−i

∫ t
t1
Ĥdt′

, (1.45)

where Ĥ is the free Hamiltonian of the system, such that

|Ψ〉 = Û(t1, t)|a〉. (1.46)

The second measurement at some time t2 > t of observable B̂ results in b according
to the eigenstate |b〉 of B̂, such that the backwards evolution results in

〈Φ| = 〈b|Û †(t2, t). (1.47)

The two-state vector 〈Φ| |Ψ〉 is the complete description of the system at time t
starting from the time t2 [22].

1.3.2 Measurements on pre- and postselected systems

In order to apply the principle of indirect measurements from Section 1.2.2 to
pre- and postselected systems, again an ensemble of systems and pointers in the
initial state |ψS〉 ⊗ |φM〉 is considered, with the difference that now, instead of
only reading off the pointer variables after the measurement, only pointer states
belonging to a specific post-selection of the system states are regarded.

More precisely (see Fig. 1.3), each initial pair is prepared (pre-selected) such
that the system and pointer state is a product state and they are then coupled via
the interaction Hamiltonian from equation Eq. (1.34) in some time interval (ti, tf ).
After having formed an ensemble of PPS by performing a strong measurement
of observable B̂ on each system state at some time ts ≥ tf and selecting only

the system states which are in the eigenstate |Φ〉 of B̂ for further consideration,
the PPS measurement is completed by measuring the pointer observable q̂ at
tM > tf . [18]

With a statistical analysis of the results the average pointer value 〈q̂PPS〉 and
therefore also the measurement results of 〈Â〉 on the PPS ensemble are gained.
Note, that it is not relevant whether the pointer measurement is performed be-
fore or after the post-selection of the system states. It is only important that for
the statistical evaluation only pointers corresponding to the PPS ensemble are
included. [18]

It is interesting to notice, that the results of a measurement of Â on a post-
selected subensemble depend on the chosen subensemble and differ from the results
of this measurement without post-selection. Therefore, the measurement results
are dependent on the initial and final state of the system.
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1.4 Weak value formalism

U

t=0 ti tf tM

tS

Figure 1.3: Schematic diagram of a model for pre- and postselected quantum
measurement. Double lines carry classical information [18].

1.4 Weak value formalism

Since weak values as outcome of weak measurements on pre- and postselected
systems were firstly introduced by Aharonov, Albert and Vaidman in 1988 [23],
there was a lot of discussion about their meaning and interpretation [24–27]. Nev-
ertheless, weak values have useful applications, such as for example in quantum
foundations [28, 29] or Bohmian mechanics [4, 7, 30–33], and research on their
meaning in various scenarios has made great progress [5, 21, 34–37]. Their defi-
nition and properties will be discussed in the following.

1.4.1 Definition of the weak value

The already mentioned measurement of Â on an ensemble of systems preselected
in a state |ψ1〉 and postselected in a state |ψ2〉 results in an outcome called the
weak value of Â [23]

Aw =
〈ψ2|Â|ψ1〉
〈ψ2|ψ1〉

. (1.48)

This value arises naturally with a weak indirect measurement (see section 1.2.2)
[18, 21, 23, 35, 38]. After the interaction (1.34) of system and apparatus, initially
prepared in |ψ1〉⊗|φM〉, has taken place, each system-pointer pair of the ensemble
is in the state

|Ψf〉 = e−
i
~γÂ⊗p̂|ψ1〉 ⊗ |φM〉, (1.49)

where the exponential can be series expanded as

e−
i
~γÂ⊗p̂ =

∑
n

(−i)n

n!~n
γnÂn ⊗ p̂n, (1.50)
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1 Standard quantum mechanics and quantum measurement

such that the postselection of the system states on |ψ2〉 results in the final pointer
state

|φFM〉 = N〈ψ2|Ψf〉 = N
∑
n

(−i)n

n!~n
γn〈ψ2|Ân|ψ1〉p̂n|φM〉

= N〈ψ2|ψ1〉
∑
n

(−i)n

n!~n
γn
〈ψ2|Ân|ψ1〉
〈ψ2|ψ1〉

p̂n|φM〉

γ�1
≈ N〈ψ2|ψ1〉

(
1− γ i〈ψ2|Â|ψ1〉

~〈ψ2|ψ1〉
p̂

)
|φM〉

≈ N〈ψ2|ψ1〉︸ ︷︷ ︸
N ′

e−
i
~γAw p̂|φM〉

(1.51)

with the normalization constants N and N ′ for which |N ′|2 = 1 holds. The ap-
proximation becomes arbitrarily accurate since the interaction strength γ can be
chosen very small. Comparing this result with the final pointer state in stan-
dard indirect measurements (1.37) it becomes clear that Aw plays the role of the
equivalent of an expectation value for pre- and postselected systems in the weak
regime. The fact that |ψ1〉 and |ψ2〉 can be nearly orthogonal can lead to the need
for a very large ensemble of measured systems [38].

The following measurement of the conjugate pointer variable q̂ yields

〈q〉f = 〈ΦF
M |q̂|ΦF

M〉

≈ 〈φM |
(

1 +
i

~
γA∗wp̂

)
q̂

(
1− i

~
γAwp̂

)
|φM〉

= 〈q̂〉+
i

~
γ (A∗w〈p̂q̂〉 − Aw〈q̂p̂〉)

= 〈q̂〉+
i

~
γ (Re[Aw]〈[p̂, q̂]〉 − i Im[Aw]〈{p̂, q̂}〉)

=
(
〈q̂〉+ γ Re[Aw] +

γ

~
Im[Aw]〈{p̂, q̂}〉

)
=

(
〈q̂〉+ γ Re[Aw] +

2γ

~
Im[Aw]cqp

)
,

(1.52)

where {Â, B̂} = ÂB̂ + B̂Â is the anticommutator.

cqp =
〈{p̂, q̂}〉

2
(1.53)

is introduced as the “quantum analog” of the classical covariance. For standard
weak measurements usually pointers with zero covariance are assumed [18, 39]
such that the pointer expectation value can be read off from a pointer shift which
is proportional to the real part of the weak value of Â

〈q〉f = 〈q〉i + γ Re[Aw]. (1.54)

Note that in a weak measurement the magnitude of the average pointer deflection
〈q〉f − 〈q〉i is much less than the statistical dispersion of the measurement result
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1.4 Weak value formalism

∆q, such that it becomes necessary to average over the measurement results ob-
tained for many identical systems prepared and postselected in the same states
[18].

As we have seen, the weak value depends on the future of the system after
the measurement and therefore can only be obtained by weak measurement on
a PPS. Accordingly, the system state is only slightly changed, which is why the
weak value provides information about the undisturbed system.

1.4.2 Unusual properties

Nevertheless, the weak value is not the same as an expectation value. It has
drastically different properties which will be described in the following.

Definite values for several non-commuting variables For any PPS en-
semble either pre- or postselected in an eigenstate of an observable Â, such that
|ψ1〉 = |aj〉 or |ψ2〉 = |aj〉, the weak value of Â is equal to the corresponding
eigenvalue aj. In contrast to standard quantum measurement, where only the
measurement results of two commuting observables can both be ascertained, a
consequence of this property is the possibility to also obtain definite values in a
PPS measurement of at least two non-commuting observables with no common
eigenstates, when |ψ1〉 6= |ψ2〉 [18, 40]. Therefore it is for example possible to
ascertain the result of a simultaneous weak PPS measurement of σ̂x and σ̂y.

Values not limited to the range of eigenvalues It is easy to see that the
formula for the weak value (1.48) with equal pre- and postselection, meaning
|ψ2〉 = |ψ1〉 yields the expectation value 〈Â〉. For 〈ψ2|ψ1〉 being very small, the
weak value of Â can get very large, because Aw diverges for 〈ψ2|ψ1〉 tending
to zero, with the consequence that the weak value is not limited by the range
of eigenvalues of an observable. This effect can be explained by interference of
the differently displaced pointer components. For standard indirect measurement
(1.38), no interference is possible as the pointer states are – even if they overlap
due to the weakness of the measurement interaction – correlated to pairwise or-
thogonal eigenstates of the observable. For a weak measurement on a pre- and
postselected system the components overlap significantly and the postselection
creates interference which strongly affects the measurement results. [18]

Complex values Moreover, in general the weak value is a complex quantity.
As it was already shown above, the imaginary part of Aw does not affect the
probability distribution of the pointer position q̂ for standard weak measurements,
but it does affect the distribution of the conjugate variable p̂. The shift of the
momentum of the pointer is proportional to the imaginary part of the weak value
of Â [18]

〈p̂〉f = 〈p̂〉i + 2γ(∆p)2 Im[Aw], (1.55)
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1 Standard quantum mechanics and quantum measurement

where ∆p is the statistical dispersion of the measurement results of the pointer
momentum.

Due to these unusual properties, that a weak value can be far outside the range
of the eigenvalues of the observable, negative or even complex, the probability dis-
tribution of the pointer values is in general non-classical and therefore the weak
value cannot be understood as a usual mean value of a weak PPS measurement,
as it is taken over a non-classical distribution [18].
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2 Bohmian mechanics and the
double slit experiment

2.1 Bohmian mechanics

Louis de Broglie’s PhD thesis from 1924 addresses not only the famous wave-
particle-duality of matter, but also a theory of new dynamics in which particle
velocities are determined by guiding waves. Three years later, in 1927, he pre-
sented an even more complete form of his pilot-wave-theory at the fifth Solvay
conference [41, pp. 116].

This theory was neglected and considered wrong for many years. In 1952, the
theory was elaborated by David Bohm [1], but still largely ignored by the physics
community. Since the 1990s with the publication of textbooks explaining quantum
mechanical phenomena through pilot wave theory [42, 43], Bohmian mechanics, as
Bohm’s theory is often called, has been recognized as an alternative interpretation
to SQM by most of the physics world [44]. The following chapter will discuss the
ideas of Bohmian mechanics and summarize the formalism.

2.1.1 Criticism on standard quantum mechanics

“If the ontology is clear – if it is clear what the fundamental entities
in nature are that the theory seeks to describe – there can’t be any
paradoxes.”

D. Dürr and D. Lazarovici, 2020 [45]

Ontology of quantum theories
As it was explained, SQM is a statistical description of the results of a measure-
ment process. Compared to previous theories like Newtonian or classical statisti-
cal mechanics, where the predictions are also statistical, but both measurement
and statistics are based on assumptions on what is happening in the system, the
standard quantum theory can be formulated only in terms of the results of the
measurement process. Therefore, SQM does not, like previous theories, deal with
the ontology of individual actual systems but seems to have an epistemological
and statistical component, as it is only described by the results of the measure-
ment. That means that without the measurement results there is nothing left but
pure mathematics without any physical interpretations. [42]

For many opponents of the standard quantum theory this lack of ontology
invites doubt. Dürr and Lazarovici, for example, explain in their book “Under-
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2 Bohmian mechanics and the double slit experiment

standing Quantum Mechanics” that the question What is the theory about? is a
physical question, which has to be answered by the theory itself and should not
be left open to interpretation. It is fundamental in order to understand what a
theory tells about nature [45].

Arguing against SQM and for his alternative theory, David Bohm points out
that the assumptions SQM is making and the resulting lack of precision are un-
necessary. These assumptions contain, firstly, that the wave function and its
probability interpretation are the most complete specification of the state of an
individual system, and, secondly, that its collapse, the process of transfer of a
single quantum from observed system to measuring apparatus is inherently un-
predictable, uncontrollable and unanalyzable [1]. This leads to a self consistent
formulation, with the uncertainty principle as an inherent and unavoidable lim-
itation on the precision of all possible measurements. However, he argues that
this consistency of the formulation is not sufficient to exclude other possible inter-
pretations with additional parameters. Also there is no proof for the necessity of
the assumptions, which remove the “possibility of even conceiving precisely what
might determine the behavior of an individual system at quantum level” [1].

In order to restore precision and understand what is ‘really’ happening, Bohm
adds the particle’s position to the wavefunction as the theory’s ontology. By the
description of the particle’s movement, it is possible to explain what is happening
in the real physical world without assuming a fundamental role for the human
observer [42].

The Measurement problem
Since the beginning of quantum mechanics the measurement of a quantum ob-
servable was a subject of discussion and paradoxes. The individual solution of the
problem by each different interpretation of QM is very important for the judging
of each theory.

Considering the measurement of a spatial observable with an non-degenerate
spectrum of eigenvalues n, normalized eigenstates ψn(x) and an initial wave func-
tion of the observed system

ψ(x) =
∑
i

cnψn(x). (2.1)

which is coupled to a measurement apparatus with initial wave function ϕ0(y)
such that the combined wave function reads

Ψi(x, y) = ϕ0(y)
∑
n

cnψn(x). (2.2)

After a suitable interaction the final state of system and apparatus is given by

Ψf (x, y) =
∑
n

cnϕn(y)ψn(x). (2.3)
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2.1 Bohmian mechanics

This is an entangled state of the system and the non-overlapping pointer-states
ϕn(y), displaying the different ‘ψn’. Hence, the pointer seems to indicate several
states at the same time. This state doesn’t represent a pointer displaying one
specific state by pointing into one definite direction, as it is actually experienced
when measurements are performed [45]. This is the measurement problem.

SQM’s solution The first ideas solving the dilemma were proposed by Heisen-
berg in his uncertainty paper 1927 [46] and later elaborated by van Neumann
in his book about the mathematical foundations of QM in 1932 [19]. They pos-
tulated the collapse of the wavefunction as a dynamical process independent of
Schrödinger’s equation which reduces the superposition (2.3) to ϕm(y)ψm(x) with
probability |cm|2 [45, 47] as it was explained in the previous chapter 1.2.2.

Hence, in SQM there are two different dynamics: Firstly, the deterministic one
given by Schrödinger’s equation, when the system is not measured, and, secondly,
a probabilistic one which collapses the wave function to an eigenstate of a mea-
sured observable. [19]

This incompatibility of the dynamics and the resulting importance of the ob-
server’s role of is often criticized. “When the ‘system’ in question is the whole
world, where is the ‘measurer’ to be found? [...] What exactly qualifies some
subsystems to play this role? [...] Is there ever then a moment when there is
no jumping and the Schrödinger equation applies?”[48, p. 117]. The ambiguity,
consisting in the lack of clear distinction between “macroscopic definiteness” and
“microscopic indefinitenes” [44, p. 156], is leading to many different theories that
treat the measurement problem differently compared to the standard interpreta-
tion of QM.

BM’s solution Prominent alternatives to SQM are for example the GRW the-
ory [49], which replaces the Schrödinger evolution by a non-linear, stochastic equa-
tion that already contains the possibility of collapse, or the Many Worlds theory,
which accepts the macroscopic superposition of the measurement device, but ex-
tends it to the experimenter and his or her whole universe [50].

Nevertheless, this thesis is about the Bohmian way of thinking and in this the-
ory, as already mentioned above, the assumption that the wavefunction provides
a complete description of the physical state of a system is denied. In order to turn
an incomplete description into a complete one the motion of point particles is used
to describe the occurrence of the particular measurement outcomes. The complete
description of a system is therefore given by a pair (ψ,Q) of the wave function
ψ and the position Q of the system’s particles. The wavefunction is responsible
for the guidance of the particle’s motion. Thus, a macroscopic superposition of
the measurement device is possible on the level of the wavefunction (2.3), and the
actual configuration describes a pointer pointing into one definite direction [45].
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2 Bohmian mechanics and the double slit experiment

2.1.2 Non-local hidden variables

These actual particle positions represent hidden variables compared to SQM. Sub-
ensembles are not anymore classified only by quantum mechanical observables
but in terms of inner properties, which can later influence the directly observable
behavior of the system [51]. This turns QM from a probabilistic to a deterministic
theory. BM is one of the most popular hidden variable theories in a whole cosmos
of theories explaining quantum phenomena using additional variables.

No-hidden-variable proof and its refutation This attribution as a hid-
den variable theory became the theory’s undoing after its first formulation by
de Broglie [52], when von Neumann formulated a proof which ruled out hidden
variable theories for QM [19].

In his proof von Neumann’s main assumption was, that any real linear combi-
nation of any two hermitian operators represents an observable, and that the same
linear combination of expectation values is the expectation of the combination.
This is, when Ô = Â + B̂, then 〈Ô〉 = 〈Â〉 + 〈B̂〉, which is true for SQM states,
but von Neumann sets it also as an requirement for those hypothetical states,
which are said to be dispersion free because they are further specified by hidden
variables such that given values of these variables together with the state vector
determine precisely the outcome of individual measurements [53]. For dispersion
free states, which do not have statistical character, the expectation value of the
observable must equal one of its eigenvalues and therefore the additivity of ex-
pectation values is not given anymore [53]. Von Neumann then concluded that
there is no other description of the quantum mechanical process possible than the
statistical one.

Even though already in 1935 Grete Hermann recognized the limited validity of
his proof [54], von Neumann’s No Hidden Variable proof was regarded as a com-
plete repudiation of hidden variable interpretations by the physics community for
many years. Contrary to her own opinion, that QM could be seen as causal and
complete and there is no need for the assumption of hidden variables, Hermann,
a young female mathematician, physicist and philosopher, was the first to show
that von Neumann’s proof was not consistent [55]. Unfortunately this knowledge
had been ignored by the physics society until John S. Bell in 1966 – inspired by
the counterexample to von Neumann’s proof by Bohm in 1952 [1] – redid the
argumentation unaware of Hermann’s effort.

Bell explains – similar to Hermann – that there is no reason to demand the
additivity of expectation values, which is a quite peculiar property of quantum
mechanics, a priori from the hypothetical dispersion free state, “whose function is
to reproduce the measurable peculiarities of quantum mechanics when averaged
over” [53].

Non-locality In contrast to classical physics, which is ruled by the principle
of locality, which means that no influence on a given physical system can travel
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faster than light, in QM systems can be influenced by actions at a remote dis-
tance non-locally. After a long ongoing debate on the incompleteness of the wave
function and the necessity of hidden variables [56, 57] to explain phenomena like
entanglement, where the measurement of one part of the system is instantaneously
correlated with the outcome of the measurement of the other part of the system
independent of their distance, in 1964 Bell [58] provided a way to experimentally
show, that no physical theory using local hidden variables can ever reproduce all
predictions of QM [57, 59].

Forgotten, because considered wrong until Bell’s rescue of non-local hidden
variable theories, Bohm’s model indeed explained the non-locality in QM by using
a quantum potential, which is formed by the wave function, guides the particle’s
position and instantaneously reacts on changes of any element involved in the
quantum mechanical process. Therefore, if entanglement is present, the position
of a Bohmian particle can affect the motion of an arbitrarily distant particle,
which is clearly a non-local effect [60]. The exact mathematical properties of the
theory are explained in the following section.

2.1.3 Mathematical description of the Bohmian theory

Particles in motion are the main idea of BM. The motion of N particles is governed
by a vector field on the 3N -dimensional configuration space of the particles

R3N = {q | q = (q1, ...,qN),qk ∈ R3}

A complete description of the system is provided by not only the wavefunc-
tion ψ(q, t) = ψ(q1, ..,qN , t), defined on the space of possible configurations q
of the system, but also the actual configuration Q, defined by the actual positions
Q1, ..., QN of its particles [45, 61].

Particles and the wave function
The complete Bohmian theory can be described by only two equations. On the
one hand, there is Schrödinger’s equation for the wave function’s evolution:

i~
∂

∂t
ψ(q, t) =

[
− ~2

2m
∇2 + V (q)

]
ψ(q, t) = Ĥψ(q, t), (2.4)

with the Hamiltonian Ĥ, containing the masses of the particles and a potential
energy term. Thus, the evolution of the wave function in BM does not differ from
their evolution in SQM. Due to the wave function’s statistical relevance for the
system, measurement results are the same for all time in BM and SQM. [45, 62, 63]

On the other hand, the wavefunction defines the velocity vector field, which is
the guiding equation for the evolution of the position of the particles:

vψ(q, t) =
d

dt
Q(t) =

~
m

Im

[
∇ψ(q, t)

ψ(q, t)

] ∣∣∣∣
q=Q(t)

(2.5)

23
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The quantum potential To motivate Eq. (2.5) we can write the complex wave
function in its polar form

ψ(q, t) = R(q, t)e
i
~S(q,t), (2.6)

insert it to Schrödinger’s equation (2.4) and separate real and imaginary parts.
Then, Schrödinger’s equation reduces to the two following equations:

∂S

∂t
+

(∇S)2

2m
+ V − ~2

2m

∇2R

R
= 0 and (2.7a)

∂R

∂t
− ~2

2m
(R∇2S + 2∇R∇S) = 0 (2.7b)

In the classical limit (~→ 0) Eq. (2.7a) resembles the Hamilton-Jacobi equation.
Considering an ensemble of particle trajectories which are solutions of the equa-
tions of motion, then if all of these trajectories are normal to any given surface
of constant S, they are normal to all surfaces of constant S and ∇S(q)/m will be
equal to the velocity vector v(q) for any particle passing the point q [1]. This idea
can be transformed to the guiding equation (2.5).

The particle may therefore be regarded as particle with momentum p = ∇S,
subject not only to the classical potential V, but also to the quantum potential U
[42]

U(q, t) = − ~2

2m

∇2R

R
, (2.8)

which goes to zero in the classical limit.

The continuity equation Another way to understand the guiding equation
(2.5) is to rewrite Eq. (2.7b) in terms of the probability density ρ = |ψ(q, t)|2 = R2

[62]
∂ρ

∂t
+∇ρ∇S

m
= 0. (2.9)

By inserting the polar form of the wavefunction (2.6) into Madelung’s [64] defini-
tion for the probability current or quantum flux jψ

jψ(q, t) =
~

2im
(ψ∗∇ψ − ψ∇ψ∗) (2.10)

one finds out that equation (2.9) is nothing else but a continuity equation

∂ρ

∂t
+∇jψ = 0. (2.11)

Rewriting equation (2.10) as

jψ(q, t) =
~
m

Im [ψ∗∇ψ] (2.12)

and considering

∇jψ = ∇ jψ

|ψ|2
|ψ|2 =: ∇vψ|ψ|2, (2.13)
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2.1 Bohmian mechanics

one obtains the vector field

vψ(q, t) =
jψ(q, t)

|ψ(q, t)|2
=

~
m

Im

[
ψ∗(q, t)∇ψ(q, t)

|ψ(q, t)|2

]
, (2.14)

which can be reduced to the guiding equation.

Statistical properties of BM
On its way to provide a realistic theory of QM Bohmian mechanics reveals itself
as a deterministic theory. Once an initial wavefunction ψt0 is specified for a
certain initial time t0, the wavefunction ψt can be calculated for every time t
by Schrödinger’s equation. The guiding equation (2.5) then defines the particle
position for all times, such that, once an initial configuration Q(t0) is specified, it
determines the entire history of the system. As shown by the continuity equation
(2.11) it is consistent to interpret |ψ|2 = ρ as a probability density in a statistical
ensemble of well-defined trajectories, each following the causal laws above. Hence,
an initial configuration Q(t0) chosen at random with probability density |ψt0|2 will
have later at some time t a configuration Q(t) corresponding to the probability
density |ψt|2. This compliance of the configuration with the Born rule is known
as equivariance. [63]

The position of Bohmian particles is therefore theoretically determined for all
times by their initial position and wavefunction. Practically it is not to disregard
that the positions of Bohmian particles cannot be controlled with arbitrary pre-
cision, they are hidden variables. Therefore, one has to focus on typical initial
values when using the theory to explain phenomena [45, 65]. Thus, a measure
of typicality is needed to define which configurations are typical, which has to
be preserved under the dynamics of the system. In BM this measure is naturally
given by the probability density ρ = |ψ(t)|2 for all times, which means that Born’s
rule here is not an axiom but a theorem [62], also called quantum equilibrium hy-
pothesis. An important consequence of this is the empirical equivalence between
BM and SQM, which implies that for every conceivable experiment BM makes
the same predictions as SQM [32].

In summary, the Bohmian theory can be explained in only three steps: Firstly
the ψ-field satisfies Schrödinger’s equation, secondly the guiding equation (2.5)
holds and thirdly there is a statistical ensemble of particle positions with a prob-
ability density ρ = |ψ(q, t)|2 [2]. Therefore, the wavefunction carries out two
important tasks in the Bohmian theory. On the one hand it is responsible for the
definition of the quantum potential and on the other it is, as in SQM, responsible
for the probability density as Born suggested. The main difference to Born’s idea
of a probability density to find a particle at a certain position in a suitable mea-
surement is that in the Bohmian interpretation it is the probability density for a
particle to be at a certain position [45]. Hence, even though measurement results
are the same in both theories, different interpretations lead to different perspec-
tives on the observation. This becomes clear by a closer look at the double slit
experiment in the following section.
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2 Bohmian mechanics and the double slit experiment

2.2 The Double slit experiment

When Young presented his experimental proof of the “general law of the interfer-
ence of light” in 1803 [66], he did not know that it would become one of the most
influential experiments in physics, due to its tight connection to quantum mechan-
ics. By sending coherent light through a plate with two parallel slits in it and later
detecting an interference pattern on a screen (see Fig. 2.1), Young discovered the
wavelike behavior of light. After Einstein’s explanation for the photoelectric effect
via light quanta, the so called photons [67], and the verification of de Broglies idea
[52] that also quantum particles create such interference patterns, with electrons
by Davisson and Germer [68], it was clear that light like every other quantum
particle can be both: particle and wave, also called wave-particle duality. So, the
interference pattern is even preserved if only a single particle enters at a time,
and then the impact points of many particles are accumulated. This completely
contradicts classical intuition. [69, 70]

source

slits

interference
region

screen

z

x

Figure 2.1: Illustration of a double slit experiment

Of course, the various interpretations of QM treat the wave-particle duality
differently, but all agree that the double-slit experiment reflects the extraordinary
nature of QM. In his Lectures on Physics Richard Feynman expresses powerfully
the importance of this experiment for quantum mechanics:

“We choose to examine a phenomenon which is impossible, absolutely
impossible, to explain in any classical way, and which has in it the
heart of quantum mechanics. In reality, it contains the only mystery.
We cannot make the mystery go away by ‘explaining’ how it works.
We will just tell you how it works. In telling you how it works we will
have told you about the basic peculiarities of all quantum mechanics.”

Richard Feynman, 1963 [3]
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2.2 The Double slit experiment

2.2.1 Standard quantum mechanics explanation

In the usual interpretation of quantum mechanics the interference pattern arises,
because the properies of the particle is described by a wave function, which gets
modified by interference and diffraction when passing through the slit system,
such that the characteristic intensity pattern is created. The probability to detect
the particle between x and x + dx is |ψ(x)|2dx, such that, if the experiment is
repeated many times with the same initial conditions, one eventually obtains the
interference pattern, known from classical optics [1].

But there are several questions left open. The particle can not be identical with
its associated wave, as the wave spreads out over a wide region, whereas when
measuring the particle’s position a certain value is obtained. On the other hand
an interference pattern or the question, why particles can reach different detection
regions when one slit is closed, cannot be explained without a wavelike nature of
the particle. [1]

Thus, SQM takes advantage of the so called principle of complementarity, in-
troduced by Niels Bohr in 1927 [71], where elements from both views – wave and
particle – are equally valid and equally needed for an exhaustive description of
the data, but their applicability is dependent on the experimental context [72].
Therefore, it is impossible to measure the full properties of the wave and particle
at a particular moment.

Applied to the double slit, this means that while the electron goes through
the slit system its position is said to be ambiguous, such that it is meaningless
to ask through which slit an individual electron actually passed as long as the
interference pattern is present. Here the wave mode can be used and describes
the occurring of interference. On the other hand, there are conditions under which
the particle model becomes defined more precisely corresponding to a decrease of
wave behavior. When for example the position of the electron passing the slit
system is measured, the interference pattern and therefore its wavelike property
is completely destroyed. [1]

2.2.2 Bohmian mechanics explanation

In contrast to the standard way in the Bohmian picture wave and particle exist
simultaneously. Thus, the causal and continuous Bohmian description is possible
in terms of a single precisely definable conceptual model [1], where the physical
particle goes through only one slit, whereas the wave passes through both and
therefore interferes [62]. The same wavefunction as in the standard interpretation
is here regarded as a mathematical representation of a real field, determining parts
of the force acting on the particle via the quantum potential (2.8)

U(q, t) = − ~2

2m

∇2R

R
,

which is dependent on the amplitude of the wavefunction R(q, t). The quantum
potential guides the particle through the interference region which results in well
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2 Bohmian mechanics and the double slit experiment

defined particle trajectories, defined as the integral curves along the vector field
vψ(q, t) (2.14). The first calculation of this potential by Phillipidis et al. [73] can
be seen in Fig. 2.2.

Interference and quantum potential
For a plane wave, before entering the slit the potential vanishes as the amplitude
is constant, whereas in the interference region the particle experiences a quantum
potential which changes rapidly with position, resulting in a quite complicated
motion of the particle. Nonetheless, the probability that a particle will arrive in a
certain region dx on the screen, is given by |ψ(x)|2dx as in the standard theory. It
can be easily seen that, due to the quantum potential, the particle never reaches
a point where the wave function vanishes. For an amplitude of the wavefunction
going to zero the quantum potential goes to infinity. [1]

Another important property of the quantum potential is its non-locality. Prop-
erties of all participating elements, like masses, particle velocities or the geometry
of the slits, are combined in an irreducible way in it. This suggests that space no
longer plays the role of “a neutral back cloth”[73], but appears to be structured
in a way that imposes constraints on all processes embedded within it, such that
the position of a particle, guided by the quantum potential, defines e.g. the value
of the involved wave functions. This puts Bohr’s claim that quantum phenomena
and the experimental situation are inseparable in a new light: changing anything
involved in the process changes instantaneously the whole quantum potential and
possibly gives rise to the observation of completely different phenomena even at
distant positions. [73]

Hence, closing one slit alters the ψ-field and thus the quantum potential is
changed. That is why particles can now reach other regions than they could have
reached before, when both slits were open. The slit can therefore affect the motion
of the particles only indirectly, through its effect on the ψ-field. Contrary to SQM
the fact, that the measurement of the particle’s position at the moment of its
passage through the slit system destroys the interference pattern, is explained by
the disturbance of of the wave function by such an measurement apparatus, but
not by the conceptual structure of the theory. [1]

Interference and trajectories
Guided by and therefore accumulating in lower valued regions of the quantum po-
tential, the particles travel from the slits to the screen. The calculated trajectories
of various initial positions within each of the slits by Philippidis et al. [73] can be
seen in figure 2.3. The connection of the trajectories and the quantum potential
becomes visible by comparing Fig. 2.2 and Fig. 2.3. Dependent on their position
particles experience a force given by the value of the quantum potential at their
position. Particles entering a region of a trough, i.e. a region where the potential
goes to minus infinity, are strongly accelerated into a region of a plateau, where
the potential is weak again until they reach a trough again. That’s why most of
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2.2 The Double slit experiment

Figure 2.2: Quantum potential for two Gaussian slits. First theoretical calcula-
tion, by Philippidis et al. [73].

the trajectories run along the plateau regions resulting in bright fringes, whereas
troughs coincide with dark fringes [73].

Another point of view, which is also important for the experimental realization,
is to understand, that the distribution of the transverse momentum shows at every
z-position in the interference region a different profile (see Fig. 2.4). Dependent on
the quantum potential at the given z-position, the absolute value of the velocity
in x-direction is either high, changing particle’s motion in x direction in the region
of an interference minimum for example, or low when the particle does not change
its propagation direction.

Visible in Fig. 2.2, Fig. 2.3, and Fig. 2.4 both the potential, the trajectories and
the Bohmian momentum show a common symmetry. It stems from the symmetry
of the double-slit configuration, which can be the seen in the total wavefunction

ψ(x, z, t) =
1√
2

(ψL(x, z, t) + ψR(x, z, t)), (2.15)

where the wavefunction from the left slit can be obtained by the one from the
right slit by reflection at the x = 0-plane:

ψR(x, z, t) = ψL(−x, z, t). (2.16)

Thus, the z-component of the current vector (2.12) j ∝ Im[ψ∇ψ] is odd in x
and so is also the velocity field (2.14) v = j/|ψ|2, while the probability density
is even. Therefore, the x-component of the velocity vanishes at the x = 0-axis.
This implies, that Bohmian trajectories do not cross the x = 0-line [48]. Hence,
according to the Bohmian theory a particle detected on the left side of the screen
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2 Bohmian mechanics and the double slit experiment

Figure 2.3: Particle trajectories in the interference region of a double slit appa-
ratus. First theoretical calculation, by Philippidis et al. [73].

(x < 0) must have passed through the left slit and vice versa. In SQM this
statement is completely meaningless. Due to the complementarity principle no
assertions about the slit or position can be made, as long as no measurement is
performed. [4]

Surreal trajectories
Continuing this thought about the dependence of the traversed slit on the point of
incidence of the photon on the screen, the Bohmian theory was strongly criticized
by Englert, Scully, Süssmann and Walther (ESSW) in 1992, who claimed that
“the reality attributed to Bohm trajectories is not physical, it is metaphysical”
[4]. This paper led to an intense debate about the realism of Bohmian trajectories.

Accusation of surrealism In their Paper ESSW consider a double-slit exper-
iment with additional which-way-detectors. These detectors are ideally chosen
such, that they do not disturb the motion of the particle’s center of mass and
do not induce macroscopic displacement of the detector’s particles until after the
observed particle reached the screen. Now, the wavefunction in the interference
region is entangled with the which-way detector status as

Ψ(x, t) =
1√
2

(ψL(x, t)|yes
no〉+ ψR(x, t)|no

yes〉). (2.17)

This definitively destroys the interference pattern but the symmetry of the system
and of the trajectories is not changed. The crucial element of this scenario is now
the fact that the wavefunction ψL does not vanish in the left half of the screen
and consequently there will always be particles detected on the “wrong” half of
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2.2 The Double slit experiment

Figure 2.4: Bohmian trajectories of a Gaussian double slit together with their
transverse momentum profile at z = 15 cm, z = 30 cm and z = 50 cm. The slit
geometry is chosen with a width of w0 = 130 µm and a slit separation of 1 mm.

the screen, e.g. on the left half, when the which-way detector on the right side
has clicked. ESSW conclude that the Bohmian trajectory is here macroscopically
at variance with the “actual”, observed one. Thus, Bohmian trajectories must be
surrealistic. [4]

In order to experimentally observe these ‘surreal’ trajectories Braverman and
Simon proposed [74] an experimental setup, which was later realized by Mahler
et al. [7], where, instead of using a which-way detector in front of each slit, in a
photon experiment the traversed slit of the photon in the double slit is entangled
with the polarization of a second photon the wave function in the interference
region is given by

Ψ(x, t) =
1√
2

(ψL(x, t)|H〉+ ψR(x, t)|V 〉). (2.18)

Since now the which-way information is encoded in the second particle’s polar-
ization, the ’surreality’ is that SQM intuition is that the second particle should
reliably carry the which-way information about which slit the first particle ‘actu-
ally’ went through, but in the experiment it is found that the predicted Bohmian
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2 Bohmian mechanics and the double slit experiment

trajectories often fail to agree with the outcome of the which-way measurement
performed on the second particle [7]. Say, a photon on the left hand side of the
screen is detected, whereas its partner photon has the polarization indicating the
right slit (V) (see Fig. 2.5).

Figure 2.5: Illustration of the ‘surreal’ scenario: The which-way information of
the first photon is entangled with the polarization of a second photon. Due to the
geometry of the setup, the trajectories do not cross x = 0.

Defense of the realism of Bohmian trajectories The attack on the reality
of the Bohmian interpretation raised a huge debate among the proponents of
the theory [75–79]. While Dürr et al. [76] are accusing the incorrect usage of
the theoretical framework and the “self-destructive” argumentation of ESSW,
Dewdney et al. [77] see the point in the non-locality of the quantum potential.

Dewdney et al. explain in their paper that, due to the non-locality of the
quantum-potential, the detector can be “fooled” and click, even though the par-
ticle did not pass through the detector. They emphasize, like Dürr et al., that
both theory and calculations must be applied rigorously and consistently in order
to avoid confusion.

The problem of the ‘wrong’ polarization is not a problem in the Bohmian the-
ory. It has to be kept in mind, that in the Bohmian picture the actual particle
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2.2 The Double slit experiment

position Q and the argument of the wavefunction q are separate variables [80].
Therefore, as long as the wave functions of the two slits overlap, as is the case
in the interference region, the direction of the polarization can still change, since
only position is a property of the particle and everything else, like spin or po-
larization, is a property of the wavefunction. Hence, due to the entanglement,
the second photon can be detected to be H- or V -polarized dependent on the
amplitudes of the contributing wavefunctions at the position of the first photon in
the interference region (see Fig. 2.5). This does not differ from the view of SQM
in the point that the polarization of the second photon is also correlated to the
detected position of the first photon, but in SQM no association with a trajectory
is made.

The experiment by Mahler et al. [7] then provided an illustration of the non-
locality of the theory. They claim to demonstrate the non-locality present in
Bohmian mechanics by showing that the trajectory of the photon in the slit system
is affected by the remote choice of the basis, the second photon is measured in [7].
Moreover, they also addressed the surreality issue and indeed observed Bohmian
trajectories originating at the right slit accompanied by which-way measurement
results associated with the left slit. They find that while traversing the double slit
photon 1 enters a region where both wave functions ψL and ψR overlap, leading
to correlations between the motion of photon 1 and the polarization of photon 2.
The polarization of photon 2 is therefore not constant in time and its final state
no longer faithfully records the which-way information of the first photon. It is
concluded that the non-locality arising from the necessary entanglement is the
reason for this ‘surreal’ behavior and the ‘surreality’ is only a compelling visu-
alization of the “non-locality inherent in any realistic interpretation of quantum
mechanics” [7].

Delayed choice measurement
Delayed choice experiments have highlighted peculiarities and non-classical fea-
tures of the theory (for a summary see [81]) since the beginning of QM. The main
idea is to choose later, when the particle has already entered an interferometer
or in our double-slit experiment the interference region, if one is going to per-
form a which-way measurement or not and therefore observe interference or not.
It is also possible to observe a continuous transformation between the particle
and wave character, which rules out the naive classical interpretation that every
quantum system behaves either definitely as a particle or definitely as a wave by
adapting a priori to the specific experimental situation. [81]

In the Bohmian context it is very interesting to consider situations, in which
the quantum potential is changed, after the particle has already entered the inter-
ference region. As already mentioned the quantum potential reacts immediately
to changes in any part of the system, like altering the slit sizes or performing a
which-way measurement at any point. In the setup considered in Fig. 2.5, the
which-way degree of freedom of the photon in the double slit is entangled with
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2 Bohmian mechanics and the double slit experiment

the polarization of a second photon outside the slit system via Eq. (2.18), which
can be written in real space as

Ψ(q1, q2) =
1√
2

(ψL(q1)ψH(q2) + ψR(q1)ψV (q2)). (2.19)

In the Bohmian view the inseparable – even if spacelike separated – evolution of the
entangled photons is a consequence of the non-locality of the theory. Thus a deeper
investigation of the non-local features can be performed, when separating the
photons and performing spacelike separated (delayed) which-way measurements
on them.

Different measurement scenarios Dependent on the point in time of the
polarization measurement of the second photon, which can be performed before,
while or after the first photon has entered the interference region, in BM the pho-
tons will take different paths and result in different patterns on the screen. The
complete calculation of those has already been made in detail in the master thesis
of Maria Galli [20] in chapter 3.4 and will only be briefly summarized here.

The interference pattern will only be observed, when the entanglement is de-
stroyed before photon 1 reaches the slit by projecting photon 2 onto some polar-
ization state, e.g. P , without gaining information about its initial polarization
state. When calculating the Bohmian velocity via Eq. (2.14), one sees interference
terms containing the product of ψL and ψR. When performing the polarization
measurement and therefore obtaining complete information about the second pho-
ton’s polarization in the H/V basis before the photon is entering the double slit,
which corresponds to the closure of one slit, the interference pattern is destroyed
and no interference terms are guiding the particle evolution; the particle is guided
either only by ψL or only by ψR. When photon 2 is not measured at all or only
after the first photon had already been detected, the interference pattern is still
destroyed, but in the interference region the photon is guided by the complete en-
tangled wave function Eq. (2.18), which results in a velocity field which depends
on both the waves ψL and ψR but does not show any interference. [20]

In order to illustrate the influence of the time ordering of the two measurements
in BM, the polarization measurement on photon 2 is considered in σ̂x-direction.
The wavefunction (2.19) can be expressed in this basis for photon 2 as

Ψ(q1, q2) =
1√
2

[(ψL(q1) + ψR(q1))ψP (q2) + (ψL(q1)− ψR(q1))ψM(q2)], (2.20)

where ψP,M(q2) are the wavefunctions of photon 2 according to P - and
M -polarization. Same as in SQM there is no difference in the observed inter-
ference pattern in BM when only photons with a P -polarized partner photon 2
are entering the slits, or when only photons are counted for the reconstruction
of the pattern when photon 2 is detected to be P -polarized after photon 1 al-
ready reached the screen. In case photon 2 is projected onto P before photon
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2.2 The Double slit experiment

1 is entering the slit, thus ψM(q2) = 0, it is obvious that photon 1 is guided by
the interfering wave ψ(q1) ∝ ψL(q1) + ψR(q1), resulting in an interference pattern
dependent on the polarization measurement. In the other case when the mea-
surement on photon 2 is performed when photon 1 already reached the screen,
photon 1 is guided by the entangled wavefunction (2.19) through the interference
region, not resulting in an interference pattern. Nevertheless, the outcome of the
polarization measurement is dependent on the point of impact on the screen of
photon 1. When photon 1 arrived at position Q1 where |ψL(Q1)+ψR(Q1)|2 is min-
imal and therefore |ψL(Q1)− ψR(Q1)|2 maximal, photon 2 will be detected to be
M -polarized, whereas it will be P -polarized for photon 1 arriving in a maximum
of |ψL(q1) + ψR(q1)|2. This is why the interference pattern can be reconstructed
taking only the photons with a later detected P -polarized partner into account.
The difference in BM is that the points of impact on the screen are reached on
different paths according to the different quantum potential guiding the photons
through the interference region dependent on the time ordering of the measure-
ments.

When photon 2 is spacelike separated from photon 1 while the measurement is
performed, the non-local character of the theory will become visible, as the two
participating photons affect each other while being separated. Also the special
scenario in which the polarization is measured, while the photon is in the inter-
ference region, will lead to an immediate change of the quantum potential and
hence result in an immediate change of the photon’s paths, which makes possible
to directly observe the effect of a delayed choice measurement.
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2 Bohmian mechanics and the double slit experiment

2.3 Observing Bohmian trajectories

In order to make these trajectories visible, techniques are needed to measure
the path of particles in an experiment. In this section two possible techniques for
observation of Bohmian trajectories are introduced. Afterwards also the resolution
of the scenarios is analyzed.

2.3.1 Bohmian velocity as a weak value

The first idea to observe Bohmian trajectories is formulated by Wiseman [5].
Based on the definition of the Bohmian velocity via the quotient of the probabil-
ity current jψ(q, t) (2.12) and the probability density |ψ(q, t)|2 (2.14), Wiseman
showed that out of infinitely many probability currents j satisfying the continuity
equation (2.11) one “standard” j can be singled out, when it is determined exper-
imentally as a weak value. With this an operational definition for the Bohmian
dynamics is obtained and the Bohmian trajectories can be observed via weak
measurement on a large enough ensemble [5].

In order to provide an operational definition for the velocity of a pointlike
particle Wiseman introduces the “naiveliy observable” velocity as

v(q, t) = lim
τ→0

1

τ

(
qf (t+ τ)− E[qi(t) | qf (t+ τ) = q]

)
, (2.21)

where E[qi(t) | qf (t + τ) = q] is the average initial position taken over a large
ensemble for all of which the result of a following measurement of position at time
t+ τ is q. For a quantum particle it is plausible to first, at some time t, perform
a weak measurement of the position in order to not disturb the further evolution,
and then strongly measure the position at a some later time t+τ . In order to gain
information about the first position, the weak measurement has to be repeated
on a large ensemble of identically prepared particles, but still it won’t be possible
to prepare the particles such that they all follow the same trajectory. This is why
only particles should be taken into account for the determination of the velocity
at a certain position which are found later at this certain position by the strong
measurement.

It is therefore reasonable to rewrite the conditioned initial position as a weak
value defined in section 1.4

E[qi(t) | q(t+ τ) = qf ] = Re

[
〈qf |Û(τ)q̂|ψ(t)〉
〈qf |Û(τ)|ψ(t)〉

]
. (2.22)

Here Û is the unitary evolution the particle experiences in between the first and
second measurement corresponding to the Hamiltonian Ĥ of the system:

Û(τ) = e−
i
~ Ĥτ , Ĥ =

p̂2

2m
+ V (q̂). (2.23)
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With this Eq. (2.21) can be simplified to a general expression for the average
velocity at the position of the postselection as

v(qf , t) = Re

[
〈qf |i[Ĥ, q̂]|ψ(t)〉

~〈qf |ψ(t)〉

]
, (2.24)

which simplifies with i[Ĥ, q̂] = p̂
m

to the Bohmian velocity

v(qf , t) =
1

m
Re

[
〈qf |p̂|ψ(t)〉
〈qf |ψ(t)〉

]
(2.25)

This “naive” way [5] yields the Bohmian velocity (2.14). This can be seen when
reformulating the Bohmian velocity to Eq. (2.25) with 〈q|p̂|ψ〉 = −i~ ∂

∂q
ψ(q) and

therefore ∇ψ(q) = 〈q| i~ p̂|ψ〉, such that

v(q) =
~
m

Im

[
∇ψ(q)

ψ(q)

]
=

1

m
Im

[
〈q|ip̂|ψ〉
〈q|ψ〉

]
=

1

m
Re

[
〈q|p̂|ψ〉
〈q|ψ〉

]
.

First realization by Kocsis et al. The first realization of a measurement of
Bohmian trajectories via a weak measurement has been done by Kocsis et al. [6]
in 2011. They perform a weak measurement of the photon momentum by using
the photon’s polarization as a pointer. The postselection on the particle’s position
combined with the measurement of the polarization yielded the momentum weak
value. By performing such a measurement throughout the interference region of a
double slit setup, the average photon trajectories as discussed in section 2.2.2 could
be reconstructed. An experimental implementation of such an weak measurement
will be discussed in section 3.3.

2.3.2 Poynting vector as Bohmian velocity

Another surprisingly intuitive way to measure the Bohmian velocity is to measure
the wavefront directly, as the trajectories are oriented normal to them (see section
2.1.3). In a paper from 2013 Bliokh et al. [82] show that the weak momentum
measurement corresponds to measuring the transverse Poynting vector. This also
explains that Wiseman’s idea for massive particles can be transferred to massless
particles like photons.

For an electromagnetic wave with magnetic field B(r) and electric field E(r)
the Poynting vector, representing the energy current, in Gaussian units is given
by

P =
c

2
Re[E∗ ×B]. (2.26)

The Poynting vector can be written in terms of two physically meaningful contri-
butions, orbital and spin currents Po and Ps

P =
c2

2ω
Im[E∗(̇∇)E] +

c2

4ω
∇× Im[E∗ × E] = Po + Ps, (2.27)
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2 Bohmian mechanics and the double slit experiment

with [E∗(̇∇)E]i =
∑

j E
∗
j∇iEj [83].

Because the spin current does not transport energy, and only generates the spin
angular momentum of the field, the orbital part of the Poynting vector should be
associated with the observable momentum density of the field. Furthermore, for
a linearly polarized field the spin contribution vanishes Ps = 0, such that the
Poynting vector coincides with its orbital part P = Po. [82]

Considering a paraxial, monochromatic and uniformly polarized wave, the com-
plex electric field can be written as

E(r, t) = eψ(r)e−iωt, (2.28)

where e is the transverse complex unit polarization and ψ(r) is the complex scalar
field.

Therefore, the ratio of the orbital Poynting vector to the energy density W =
|E|2

2
, one obtains

Po(r)

W (r)
=
c2 Im[ψ∗(∇)ψ]

ω|ψ|2
. (2.29)

Except for the constant prefactor this formula equals the expression for the Bohmian
velocity (2.14). It is well known that the direction of the Poynting vector coincides
with the direction of the wavevector k in an isotropic medium like e.g. air [84].
Consequently the Bohmian trajectories can be reconstructed by directly measur-
ing the wavevector of the photons.

2.3.3 Uncertainty analysis

Since the two ways extracting the Bohmian velocity explained above are equiva-
lent, it is interesting to have a look at the statistical limitations of the measure-
ment, and therefore determine when trajectories are observable. This will be done
in the following section.

Weak measurement scenario In this measurement scenario the weak value
of the momentum is proportional to the shift of the pointer variable according to
equation (1.54), such that the Bohmian momentum is given by

γkB ≈ ER,

where ER is the expectation value of the pointer shift and γ is the measurement
strength. Due to the fact that this measurement is performed repeatedly N times,
for each run a value EM is obtained according to the Gaussian probability distri-
bution [85]

p(EM | ER) =
1√
2πσ

e−
(EM−ER)2

2σ2 (2.30)
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2.3 Observing Bohmian trajectories

centered around ER with a standard deviation σ =

√
1−E2

R

N
. Hence, the un-

certainty of the weak measurement σkB decreases with an increasing number of
measurements as

σkB =
σ

γ
=

√
1− (γkB)2

γ
√
N

. (2.31)

As the position of the particle can never be determined more precise than the
measurement strength, one can define

σx = γ. (2.32)

Hence from Eq. (2.31) it follows that for a single measurement the product of
the uncertainties of the momentum and position measurement are constant for γ
being small

σxσkB = c. (2.33)

Wavefront measurement To perform a wavefront measurement in an exper-
iment, it is common to use an Shack-Hartmann-Sensor [86]. It consists of a lens
array and a 2D detector. An incoming collimated beam is focused by the lenses
onto the detector, where the location of the different foci on the detector depends
on the angle of the incident wave vector at the respective lens. Therefore, the
wavefront can be reconstructed through the positions of the foci at each lens (see
Fig. 2.6). In a paraxial approximation, assuming propagation in z-direction with
only small deviations only in x-direction by the angle θ, the direction of the inci-
dent wavevector and the focus position on the detector xf are connected via the
relation

tan θ =
xf
f
, (2.34)

where f is the focal length of the lens.

Theoretically, the wavefront measurement can be regarded as a determination
of position and momentum at the same time: the photon was somewhere in the
area of the lens with a momentum proportional to the position on the detector.
The accuracy of these two measurements is determined by the transformation of
the lens, which is lower bounded by Heisenberg’s uncertainty relation

∆kx∆x ≥
1

2
, (2.35)

where ∆kx with p = ~k is proportional to the momentum uncertainty and ∆x is
proportional to the lens pitch.

The incident wavefronts to each lens of the array can be approximated by plane
waves (see Fig. 2.6). An easy and quick way to categorize the order of magnitude
of ∆kx is to assume a Gaussian beam with its waist of size w0 = ∆x directly in
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2 Bohmian mechanics and the double slit experiment

Figure 2.6: Schematic illustration of a Shack-Hartmann wavefront sensor. The
wavefront is imaged by a lenslet array onto the imageplane, where the deviations
xf from the center position indicate the average direction of the wavefront in the
area of one lenslet.

front of the lens. The focus spot size after the lens w′0 depends then on the initial
beam characteristics λ, w0 and the focal length f of the lens via [87]

w′0 =
w0√

1 +
(
πw2

0

λf

)2
. (2.36)

Hence, a detected photon at position xf arises from a Gaussian distribution with

standard deviation
w′0
2

and its position can not be determined more precisely than
within this standard deviation. As the deviation of the propagation direction in
x-direction is small compared to the total wave vector kz ≈ |k| and therefore

kx ≈
2π

λ
tan θ =

2πxf
λf

, (2.37)

holds, which lets us define the uncertainty for the determination of the wave vector
in x-direction:

∆kx =
πw′0
λf

=
πw0

λf

1√
1 +

(
πw2

0

λf

)2
. (2.38)

Eq. (2.36) can be approximated for
w2

0

λf
� 1 as

w′0 =
λf

πw0

(2.39)
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2.3 Observing Bohmian trajectories

which lets us write the uncertainty for the momentum measurement as

∆kx =
1

w0

. (2.40)

With ∆x ∝ w0 this also reduces to a constant relationship between the uncertain-
ties in momentum and position measurement like for weak measurements (2.33)

∆x∆kx = c. (2.41)

By repeating the experiment and detecting N photons at each lens, the uncer-
tainty decreases with 1√

N
, which allows to measure the kx distribution as accurate

as desired.

Figure 2.7 shows the theoretically expected kx distribution for λ = 810 nm
40 cm behind a double slit of 1 mm separation in red. The kx profile is then
averaged over a specific interval in x given by the size of one lens of the SHS. The
uncertainty is then calculated by Eq. (2.38) for an initial waist of half of the lens
size and indicated by the vertical lines. Obviously, for big lenses the interference
pattern can never be resolved, as the uncertainty of the position determination
is too large. However, the uncertainty on the momentum is small, which is why
in the area of the first intensity minimum, where the momentum is maximal, the
lens could still resolve that kx is positive or negative dependent on which side of
the intensity maximum the photon is detected (Fig. 2.7 (a)). However, it should
be noted here, that the approximation of a Gaussian or plane incident wave does
not really work anymore, as the wavefront is strongly curved in the interval of the
large lens. Smaller lenses (Fig. 2.7 (b)) better resolve the position of the photons
but lead to a bigger uncertainty in the momentum space, such that a single pho-
ton measurement had an uncertainty such big that the direction of the measured
momentum wouldn’t be resolvable at all.

2.3.4 Demonstration of a wavefront measurement

In order to test the previous proposition, the wavefront of the double slit in-
terference was reconstructed at one position in the the interference region by a
Thorlabs Shack-Hartmann wavefront sensor WFS150. This sensor uses an array
of 39 lenslets each of the size of 150 µm . The best image was obtained, when
looking at only a small area of the interference pattern, which is why for this
test the wavefront is only reconstructed in an area of approximately 1 mm in the
region of the main interference maximum.

The observed wavefront was then compared to the theoretically expected one
which is obtained by the z-profile of constant phase of the wavefunction given by

ψ(x, z) = ψG(x− xsep, z) + eiφψG(x+ xsep, z), (2.42)

where the slits are separated by and the slits are separated by 2xsep with xsep =
0.978 mm and ψG(x, z) is the wavefunction of one of the slits described by a
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Figure 2.7: Theoretical transverse momentum distribution together with their
averaged values for two different lens pitches xpitch and the error bars calculated
via Eq. (2.38).

Gaussian beam dependent on the waist w0 = 115 µm and the wavelength λ =
810 nm as described in section 3.1.1. For the extraction of the phase φ the area was
again imaged with a CCD camera and theoretical intensity profiles with various
φ were fitted onto the observed one until they matched for the correct phase
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2.3 Observing Bohmian trajectories

φ ≈ 6.0319. The theoretically expected together with the measured wavefront at
a distance of z = 44.5 cm from the slits is shown in Fig. 2.8.

In the theoretical profile in red the large central dip is caused by the main max-
imum of the interference pattern, while the smaller dips are caused by the side
maxima. Maxima in the wavefront profile stand for minima in the interference
pattern as the k-vector is pointing away from this region. Hence, the transverse
wave vector kx vanishes at every point of inflection of the wavefront, causing the
bright fringes of the interference pattern for the wavefront’s minima and dark
fringes for maxima. The pink curve is the averaged theoretical wavefront over the
area of the lenslets. The blue curve is the measured wavefront approximately in
the center in y-direction.

The main minimum is clearly visible in the measured data. The influence
of a small tilt of the camera with respect to the propagation direction on the
measured direction of the k-vector and hence on the reconstructed wavefront,
can be a reason for the slope at the edges which cause the asymmetry of the
measured profile not fitting to the theory. Also, due to the size of the lenslets, the
reconstructed wavefront is very sensitive to the position of the array in x-direction
and therefore the choice of the averaged areas. A more accurate alignment is
thus required in order to obtain an even better image of the observed wavefront,
which goes beyond a simple test of the sensor’s capabilities. Nevertheless, while a
Gaussian wavefront would not change its curvature, the wavefront observed here
does significantly, suggesting fruitful ways to measure the complete wavefront,
providing the possibility of reconstructing Bohmian trajectories.

Figure 2.8: Theoretically expected and measured wavefront in a double slit at a
distance z = 44.5 cm from the slits.
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3 Experimental implementation

In this chapter the experimental realization of the experiment for the observa-
tion Bohmian trajectories via weak measurement is explained. Therefore, first
the optical concepts which are needed to understand the experimental setup are
explained, special attention is paid to the spontaneous parametric downconver-
sion process needed to build a entangled photon source. Second, the experimental
implementation of the entangled photon source, the double slit, the trajectory
observations and the which-way measurement is explained.

3.1 Optics

3.1.1 Gaussian beam

The transverse modes of lasers which are generated in a laser cavity can be de-
scribed in terms of Hermite Gaussian TEMmn modes. The most commonly used
laser mode is the TEM00 also known as the Gaussian beam. The field amplitude
EG of a Gaussian beam propagating in z-direction can be written as

EG(z, r) = E0
w0

w(z)
e−( r

w(z))
2

e−ik
r2

R(z) e−i(kz−η(z)), (3.1)

such that r =
√
x2 + y2 denotes the distance to the propagation axis and k is the

wavevector in the medium. The place of the smallest transverse extension of the
beam, the so called beam waist w0, is located at z = 0.

The transverse profile of a Gaussian beam is given by a Gaussian distribution.
The beam radius w(z) is defined as the value of r where the field amplitude has
dropped to 1

e
and therefore the intensity to 1

e2
. The z-dependence of the beam

radius is given by

w(z) = w0

√
1 +

(
z

zR

)2

(3.2)

with the characteristic Rayleigh length zR given by Eq. (3.3) defined as the dis-
tance from z = 0 at which the area of the beam is doubled, i.e. the radius has
increased by a factor of

√
2 compared to the waist,

zR =
nπw2

0

λ
, (3.3)

where n is the refractive index of the medium and λ the wavelength of the de-
scribed light. For distances from the waist |z| � zR the beam radius is approxi-
mately linear in z as the beam spreads out over a cone with half angle θ0 = λ

πw0
.
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The curvature of the wavefronts, denoting points of constant phase of the wave,
is given by the curvature radius

R(z) = z

[
1 +

(zR
z

)2
]
, (3.4)

which goes to infinity at z = 0, hence describing plane waves at the waist while
approximately spherical wavefronts at distances much larger than the Rayleigh
length are obtained.

The Guoy phase η(z) arises from a phase retardation of π the beam acquires
traveling through the focus from z = −∞ to z = +∞:

η(z) = arctan

(
z

zR

)
. (3.5)

In experimental practice, there is never an ideal Gaussian beam. Therefore the
quality of a beam is evaluated in terms of its deviation from the ideal Gaussian
beam. Using the second moment of the intensity profile, the beam radius of any
arbitrary beam propagating in z direction and waist at z0 can be expressed via
[88]

w2
x,y = w0

2
x,y + (M2

x,y)
2 ·
(

λ

40x,y

)2

· (z − z0x,y)
2 (3.6)

where M2
x and M2

y are parameters characteristic of the particular beam describing
the evolution of the beam radii in x- and y-directions respectively. These so called
“M-squared”-values give a measure for the beam quality in the sense that M2

x,y ≥ 1
for any arbitrary beam profile with the lower limit of an ideal Gaussian beam with
M2

x,y = 1. A typical experimental beam can therefore be fully characterized by
the six parameters M2

x , M2
y , w0x, woy, z0x and z0y.

3.1.2 Optical components

Optical filters Optical filters selectively transmit only a certain part of the
spectrum. In general, they either absorb unwanted light or reflect it . A dichroic
filter works by reflecting undesired wavelengths, while transmitting the wanted
portion of the spectrum through the addition of interference coatings, whereas an
absorptive filter blocks light of specific wavelengths dependent on the absorption
properties of the glass substrate used [89]. Additionally bandpass and edgepass
filters are distinguished. Edgepass filters are determined by their cut-off or cut-on
wavelength, the wavelength were the transmission intensity has fallen (cut-off) or
risen (cut-on) to 50%, which means that the spectrum is divided into one part
transmitted and the other part reflected or absorbed by the filter. Bandpass filters
are only transmitting a specific narrow region of the spectrum determined by a
central wavelength and the full width-half maximum (FWHM) which describes
the spectral bandwidth over which a bandpass filter transmits light. The central
wavelength of a bandpass filter is dependent on the angle of incidence on the filter.

46



3.1 Optics

The relationship between the angle of incidence φ and the wavelength drift can
be approximated for φ < 15◦ [90]

λφ
λ0

=

√
n2
F − sin2 φ

nF
, (3.7)

where λ0 is the central wavelength at, λφ the shifted wavelength at an angle of
incidence φ and nF the index of refraction of the filter.

Polarization devices It is possible to describe the polarization state light with
the Jones vector [87]

J =

(
Exe

iφx

Eye
iφy

)
, (3.8)

where the components Ei and φi denote the amplitude and the phase of the
electric field perpendicular to the propagation direction z. The polarization space
corresponds exactly to the space of a qubit and thus the polarization can be
expressed in the quantum formalism using to the natural basis states defined in
section 1.1 with

|H〉 :=

(
1
0

)
, and |V 〉 :=

(
0
1

)
. (3.9)

The change of the polarization of a plane wave by an optical system can be
described using the input and output Jones vectors J1 and J2 and the transmission
Jones matrix T̂ as [87]

J2 = T̂J1. (3.10)

In the quantum formalism this transformation corresponds to a unitary rotation
of the polarization qubit. In optical experiments, these polarization rotations are
implemented by so called waveplates or wave retarders, which consist of birefrin-
gent, transparent plates of anisotropic crystals, introducing a phase delay between
two polarization states, dependent on the amount of birefringence (see section 3.2)
and the adjustment of the optical axis of the waveplate. Half-wave plates (HWP)
introduce a phase delay between the ordinary and extraordinary beam of π and
thus can rotate the axis of linear polarization, while quarter-wave plates (QWP)
introduce a phase of π/2 and can therefore convert linear to circular polarization
and vice versa.

The Jones or equivalent unitary matrices of a HWP or QWP rotated by the
angle θH or θQ with respect to the horizontal polarization are given by [91]

T̂HWP =

(
cos2 θH − sin2 θH 2 cos θH sin θH

2 cos θH sin θH sin2 θH − cos2 θH

)
,

T̂QWP =

(
cos2 θQ + i sin2 θQ (1 + i) cos θQ sin θQ

(1− i) cos θQ sin θQ sin2 θQ + i cos2 θQ

)
.

(3.11)
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Polarizers transmit a desired polarization state while reflecting, absorbing or de-
viating the other part. The Jones matrix of a linear polarizer with a transmission
axis sharing an angle θP with the horizontal axis is given by [87]

T̂Pol =

(
cos2 θP cos θP sin θP

cos θP sin θP sin2 θP ,

)
(3.12)

such that only light linearly polarized in the direction defined by θP is transmitted
by the polarizer.

3.2 Birefringence and nonlinear optics

In a nonlinear optical medium the relation between the dielectric Polarization P
and the electric field E is not linear, but instead described by the matter equation
[84]

P (E) = ε0(χ(1)E + χ(2)E2 + χ(3)E3 + ...), (3.13)

where χ(1) is the linear dielectric susceptibility, χ(n) are the dielectric suscepti-
bility coefficients of higher order and ε0 is the vacuum permittivity. Under most
conditions the nonlinear contributions are very small and can be neglected, but
for some materials or very high intensities of the electric fields the higher order
terms become significant. In this section second order nonlinear processes will be
regarded such that the expansion can be cut off after the quadratic term.

Note that in general the polarization and the E-field are vectors with three
components and the susceptibilities χ(n) are tensors of rank n+ 1 [84], such that
(3.13) can be reformulated to

Pi =
∑
j

χ
(1)
ij Ej +

∑
jk

χ
(2)
ijkEjEk (i, j, k) = 1, 2, 3. (3.14)

The linear susceptibility tensor χ(1) has – when written in an appropriate co-
ordinate basis, namely the principal axes of the medium – three non-vanishing
components which are directly connected to the refractive indices of the medium

ni =

√
1− χ(1)

ii , where i = (1, 2, 3) represents the X, Y and Z axes of the coordi-
nate system respectively.

When n1 6= n2 6= n3 the crystal is called biaxial, whereas in the special case
when two refractive indices are equal no = n1 = n2 and the third one is different
ne = n3 6= no the crystal is called uniaxial [92, 93]. The refractive indices can be
calculated by the Sellmeier equation

ni =

√
Ai +

Bi

λ2 − Ci
+Diλ2, (3.15)

where the direction dependent coefficients Ai, Bi, Ci, Di can be found in the liter-
ature [93].
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3.2 Birefringence and nonlinear optics

3.2.1 Propagation of polarized light in birefringent
crystals

Uniaxial crystals In uniaxial crystals the direction with the refractive index
no is called the optical axis. A beam with a polarization perpendicular to the
plane which contains the optical axis of the crystal and the k-vector of the beam
(principal plane) is called “ordinary” beam and experiences the ordinary refractive
index no. A beam with polarization parallel to the principal plane experiences the
extraordinary refractive index ne and is called “extraordinary” polarized. Hence
the polarization of an arbitrarily polarized beam in an uniaxial birefringent crystal
can be decomposed in the basis of the crystal axes into two orthogonally polarized
components experiencing the two different refractive indices of the medium.

Since the polarization direction of the ordinary beam is always perpendicular
to the optical axis the refractive index of the ordinary beam is not dependent
on the propagation direction of the beam. The extraordinary refractive index
ne, however, is a function of the polar angle θ between the optical axis and the
k-vector [92, 93]

ne(θ) = no

√√√√ 1 + tan2θ

1 +
(
no
ne

)2

tan2θ
. (3.16)

When entering a uniaxial birefringent medium from a medium with refractive
index n1, an ordinary beam is deflected as described by Snell’s law

n1sin(θ1) = nosin(θo,2). (3.17)

The k-vector of the extraordinary beam is also refracted by Snell’s law, but with
the angle dependent refractive index as

n1sin(θ1) = ne(θ)sin(θe,2). (3.18)

Additionally its direction is tilted relative to the ordinary beam by the walk off
angle ρ [93]

ρ(θ) = ± arctan

((
no
ne

)
tan(θ)

)
∓ θ, (3.19)

where the upper signs corresponds to a negative crystal (no > ne) and the lower
ones for a positive crystal (no < ne) [93]. Therefore an arbitrarily polarized beam,
when entering a crystal of length L orthogonal to the input surface, is divided
into two orthogonally polarized components, which after the passage through the
crystal are separated by (see Fig. 3.1)

δ = L tan(ρ). (3.20)
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Figure 3.1: Definition of the main parameters of the passage of light through an
uniaxial birefringent crystal.

Biaxial crystals In biaxial crystals – due to Fresnel’s equation [94] – for every
wave there are two polarization directions with different refractive indices called
the slow and the fast axis with ns > nf . The angular dependence of both refractive
indices results in a bilayer structure with four points of interlayer contact through
which two optical axes pass [93]. The refractive indices depend both on the
propagation direction according to

nf/s =

√
2

B ±
√
B2 − 4C

(3.21)

B =x2

(
1

n2
y

+
1

n2
z

)
+ y2

(
1

n2
x

+
1

n2
z

)
+ z2

(
1

n2
x

+
1

n2
y

)
C =

x2

n2
yn

2
z

+
y2

n2
xn

2
z

+
z2

n2
xn

2
y

,

(3.22)

where x, y and z are the projection of the unit wave vector on the principal coor-
dinate system of the crystal.

Temperature dependence of the refractive indices When using the refrac-
tive indices it has to be kept in mind that they change as a function of temperature.
There is various literature [95–97] which experimentally explores the behavior of
the biaxial periodically poled Potassium titanyl phosphate (PPKTP) crystals –
also used in our setup – at different temperatures. In [95] it is stated that for
wavelengths between 500 nm and 1550 nm the refractive indices change according
to

n(λ, T ) = n0 + n1(λ)(T − 25◦C) + n2(λ)(T − 25◦C)2 (3.23)
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with

n1,2(λ) =
3∑
i=0

ai
λi
, (3.24)

where n0 is the refractive index at room temperature and the coefficients ai are
indicated individually for each direction by the values found in [95]. The wave-
length λ here is given in micrometers. For wavelengths lower than 550 nm the
refractive index mentioned in [98] can be used.

3.2.2 Principle of spontaneous parametric
down-conversion

Considering equation (3.13) and a plane wave E = E0 cos(ωt) in a quadratic
nonlinear medium such that only the lowest order of non-linearity has to be be
taken into account, its dielectric response can be written as [92]:

P (t) = ε0χ
(1) cos(ωt) +

1

2
ε0χ

(2)E2
0 [1 + cos(2ωt)] =

= PL + PNL

(3.25)

where additionally to the linear contribution PL which is oscillating at the fre-
quency of the incoming light there is the nonlinear contribution PNL composed
of a stationary part and one oscillation at the second harmonic frequency 2ω.
Due to this term a portion of the incoming light is converted to light of doubled
frequency, which can be regarded in the photon picture as the creation of one
photon out of two incoming photons of half frequency.

Down-conversion can be seen as the inverse of a second harmonic generation
process, where one incoming, so called “pump” photon decays into two photons
with lower frequencies, which are called “signal” and “idler” photon. Due to
energy conservation for the three frequencies

ωp = ωs + ωi, (3.26)

holds, where ωp,s,i refers to the pump, signal and idler frequencies respectively. A
second condition is that the momenta of the photons have to be conserved

kp = ki + ks, (3.27)

where km are the wave vectors of the waves with frequencies ωm.
These phase-matching conditions can be achieved by using birefringent and

anisotropic crystals. In general, there are two types of SPDC processes to be
distinguished. In type I the generated photon pair shares a polarization which is
orthogonal to the polarization of the pump photon, whereas in type II processes
the polarizations of the two generated photons are orthogonal to each other, and
one of them shares the pump photon’s polarization. In order to obtain phase
matching it is important to note, that the incoming pump photon is polarized in
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the direction that corresponds to the lower value of the two possible refractive
indices [92].

The different possibilities for the polarization of the incoming photon and the
two generated ones result in two types of SPDC processes in biaxial crystals for
nx < ny < nz [94]:

Type I Type II

nfpωp = nssωs + nsiωi nfpωp = nssωs + nfi ωi

To facilitate down-conversion it is also possible to employ a technique called
“quasi-phase-matching”. There, a periodically poled material is utilized the struc-
ture of which has been fabricated in such a manner that the orientation of one of
the crystal axes is inverted periodically along another direction, which can com-
pensate a wave vector miss-match. Quasi-phase-matching can be implemented
even when birefringent phase-matching does not work and it can allow for broader
phase-matching angles and wavelengths. Additionally, it makes it possible to uti-
lize a larger nonlinear coefficient increasing the efficiency of nonlinear conversion
processes. [99]

The phase-matching condition (3.27) then changes to the quasi-phase-matching
condition to

kp = ki + ks +
2π

Λ
a, (3.28)

where Λ is the poling period and a is the direction of the poling alteration.

In periodically poled crystals also the poling period alters due to expansion of
the material when the temperature changes. The thermal expansion was measured
in [95] and was found to approximately parabolically depend on the temperature:

Λ(T ) = Λ0
[
1 + α(T − 25◦) + β(T − 25◦)2

]
, (3.29)

where Λ0 is the initial length at room temperature and α and β are the thermal
expansion coefficients also given in [95].

Phasematching conditions The phasematching condition (3.28) can be rewrit-
ten with km = |km| = ωmnm

c
and ωm = 2πc

λm
in a component wise form as

∆kx =
np(λp, T )xp

λp
− ni(λi, T )xi

λi
− ns(λs, T )xs

λs
− 1

Λ(T )
= 0

∆ky =
np(λp, T )yp

λp
− ni(λi, T )yi

λi
− ns(λs, T )ys

λs
= 0

∆kz =
np(λp, T )zp

λp
− ni(λi, T )zi

λi
− ns(λs, T )zs

λs
= 0,

(3.30)
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3.2 Birefringence and nonlinear optics

where xm, ym and zm are the projections of the unit wave vector onto the axes of
the principal coordinate system of the system, with x2

m + y2
m + z2

m = 1.
Using this normalization condition and the energy conservation, Eq. (3.30) can

be reduced to

|∆k|2 =

(
np(λp, T )xp

λp
− ni(λi, T )xi

λi
− 1

Λ(T )

)2

+

+

(
np(λp, T )yp

λp
− ni(λi, T )yi

λi

)2

+

(
np(λp, T )zp

λp
− ni(λi, T )zi

λi

)2

+

− ns(λs, T )2

(
1

λp
− 1

λi

)2

= 0.

(3.31)
where the different refractive indices are still dependent on the directions of the
photons via Eq. (3.21). For perfect phase matching Eq. (3.30) as well as Eq. (3.31)
must hold since for biaxial crystals Eq. (3.30) does not imply Eq. (3.31). With
these equations, being aware of the process type and the central wave vector kp,
the spatial distribution of the generated photons can be calculated.

Gaussian beam and crystal length In the ideal case with an infinitely
long crystal and and infinitely wide pump beam |∆k| = 0 and therefore equations
(3.30) and (3.31) hold. For a finite crystal length L and a pump intensity profile of
width ω downconversion can also occur when ∆k 6= 0. In contrast to perfect phase
matching, where the interaction Hamiltonian yields a delta function, it produces
for imperfect phase matching a weighting function for the intensity of the emitted
downconversion:

Φ = e−
1
2
ω2(∆k2y+∆k2z) sinc2(

1

2
L∆kx). (3.32)

Accepting only wavelengths which are weighted by Φ ≥ 0.5 gives a reasonable
estimation about the possible wavelength and their spacial distribution emerging
from a specific SPDC [94].

3.2.3 Spatial analysis of SPDC processes in biaxial
crystals

Coordinate systems For a more convenient analysis, following [94] two distinct
spherical coordinate systems are employed. The propagation direction of the
pump beam is best described in spherical coordinates with respect to the crystal
axes (see Fig. 3.2), while the signal and idler directions are described with respect
to the pump beam

xp = sin(θp) cos(ϕp)

yp = sin(θp) sin(ϕp)

zp = cos(θp),

(3.33)

53



3 Experimental implementation

xmym
zm

 =

cos θp cosϕp − sinϕp sin θp cosϕp
cos θp sinϕp cosϕp sin θp sinϕp
− sin θp 0 cos θ

sin(θm) cos(ϕm)
sin(θm) sin(ϕm)

cos(θm)

 , (3.34)

where the index m stands for the signal or idler photon. For a pump momentum
parallel to the poling direction ϕs = ϕi + π holds as kp, ks and ki must lie in one
plane in order to make momentum conservation possible (3.27).

z

x

y

kp

φp

ki

φiΘi

Θp

Figure 3.2: Illustration of the coordinate systems for a SPDC process. The
coordinate angles for the pump photon are defined with respect to the crystal
axes, while the signal and idler photon’s angles are defined with respect to the
k-vector of the pump beam.

Please note that only for this section – in order to keep the crystal orientation
as usually given in literature – the direction of the maximal refractive index is the
z-direction, pointing upwards. In the rest of the thesis, the z-direction will be the
propagation direction of the beam, while y is pointing upwards.

Simulation of the spatial distribution of a SPDC process in a PPKTP
In order to solve Eq. (3.30) and Eq. (3.31) and find phasematched photons we con-
sider the possible configurations for λi, ϕi, ϕs, θi and θs. After finding a matching
wavelength at a set of matching angles via |∆k| = 0 (3.31), the weighting function
(3.32) is considered at exactly this wavelength and angles.

In a collinear process, which is treated first, the signal and idler photon emerge
in the same direction ks/|ks| = ki/|ki|. Since our setup is dependent on the
collinearity of the downconversion, the PPKTP crystal of 25 mm length is man-
ufactured with a periodic poling of Λ = 10 µm in x-direction such that collinear
photon pairs in x-direction are primarily produced. Under these conditions it
is interesting to investigate at which temperature T a degenerate photon pair is
created. This can be done by finding a solution for the idler wavelength λi in
Eq. (3.31) with fixed angles θp = π/2 and θi = θs = 0 and ϕp = ϕi = ϕs − π = 0
when varying the temperature. In Fig. 3.3 the collinear wavelength dependence
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Figure 3.3: Theoretical calculation of the wavelength of a collinear SPDC photon
pair for a straight pump beam as a function of temperature.

on the temperature is shown, where one can see that the collinear creation of a
degenerate pair happens at ∼ 50◦C as specified by the manufacturer.
Next, the spectral and spatial distribution at a fixed temperature has to be con-

sidered. For a fixed polar angle ϕi and a pump entering in x-direction the solution
space of possible idler wavelength at variation of θi and θs can be seen in Fig. 3.4.
The dark red parts here are combinations of signal and idler angles, where either
energy is not conserved or the weighting function (3.32) gets too small. We can
see that the signal and idler angles are correlated, especially for larger angles,
where there exist only phase matched photon pairs, when both, signal and idler
photon, emerge at the same opening angle θ. For angles close to 0◦, i.e. close to
the pump beam and the poling direction, there is more deviation of direction of
the two emerging photons possible. For smaller possible angles it can be seen that
the minimum possible idler wavelength for θi, θs ∈ [−1◦, 1◦] is about 806 nm.

The spatial distribution for degenerated signal and idler photons λs,i = 810 ±
0.2 nm is shown in Fig. 3.5. Since the simulation checks, if for a given set of
idler angles, there exists a soulution for a signal configuration, for redder points
the partner photon is more widely spread. Considering deviating wavelength like
λi = 808± 0.2 nm and λs = 812± 0.2 nm, it can be seen that the photons no do
not emerge parallel to the pump anymore but within a ring around it (Fig. 3.6).

Alteration of the pump direction For a pump wavevector not entering nor-
mal to the crystal axes anymore the calculation becomes even more complicated,
as now ϕi and ϕs are not connected anymore, because the pump wavevector is
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(a) θi,s ∈ (−5◦, 5◦)

(b) θi,s ∈ (−1◦, 1◦)

Figure 3.4: Wavelength of the idler photon dependent on the azimuthal angles
θi,s at fixed temperature T = 50◦
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3.2 Birefringence and nonlinear optics

Figure 3.5: Spatial emission of signal and idler photons at λs,i = 810±0.2 nm,for
(ϕp, θp) = (0◦, 90◦), T = 50◦, xm = θm cosϕm, ym = θm sinϕm

no longer parallel to the poling period and hence the four vectors in Eq. (3.28)
do not necessarily have to lie in one plane. Still it is of interest to know at which
temperature degenerated photons are emerging parallel to the pump. It can be
shown that the temperature needed for collinearly emerging photons parallel to
the pump beam at a tilted pump beam decreases until 45◦C for an increasing θp
until there is no solution anymore for θp > 1.9◦. The temperature dependence of
collinearly emerging photons parallel to the pump at a pump tilted by 1.8◦ can
be seen in Fig. 3.7.

Hence, the temperature for a tilted crystal can be adjusted such that degenerate
photon pairs are still produced collinearly. Nevertheless, this won’t leave the
spatial distribution and the efficiency unaltered. The maximum intensity will be
at a position, where momentum conservation holds and the weighting function is
1 (3.32). This is why in this case the possible emission angles of one wavelength
are not distributed symmetrically around the pump wavevector anymore, but one
side is more likely than the other.

Furthermore, it has to be kept in mind, that all calculated angles will change
when the photons diffract at the crystal surface when exiting the PPKTP. Here
the idler and signal photon experience a different refraction angle because they
are perpendicularly polarized. Hence photons not exiting normal to the crystal
surface are separated even if they emerged collinearly.
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Figure 3.6: Spatial emission of signal and idler photons at λi = 808 ± 0.2 nm
and λs = 812 ± 0.2 nm,for (ϕp, θp) = (0◦, 90◦), T = 50◦, xm = θm cosϕm, ym =
θm sinϕm
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Figure 3.7: Theoretical calculation of the wavelength of a collinear SPDC photon
pair parallel to the pump wavevector for a tilted pump beam θp = 91.8◦ as a
function of temperature. Degenerated photon pairs in this direction are produced
at about 45.7◦.
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3.3 Experimental setup

In order to realize the observation of Bohmian trajectories via weak measurement
and the delayed choice measurement of the which-way information, three principle
parts of the setup are required (see Fig. 3.3). First of all there is the source, creat-
ing pairs of entangled photons. One photon of a pair is then sent to a polarization
measurement unit. The polarization measurement can be performed at any time
independently of the other photons position in the slit system, which enables to
switch between the different measurement scenarios explained in section 2.2.2.
The other photon is meanwhile sent to the double slit, where the trajectories are
observed via weak measurement as explained in section 2.3.1.

Figure 3.8: Complete experiment setup: Photon 1 of an entangled photon pair
is sent to the double slit and is weakly measured in the interference region while
a polarization measurement is performed at arbitrary time on photon 2.

Since the experimental work linked to this thesis was mostly focused on the
creation of the entangled photon source, the source will be explained and analyzed
in great detail, while the other parts of the setup are explained only conceptually.

3.3.1 Double slit setup

The double slit itself is composed of two birefringent Yttriumvanadat crystals
(YVO4), also called YVO, which are adjusted such that that H-polarized light
experiences the extraordinary refractive index of the crystal and is hence diffracted
with respect to V -polarized light. This is achieved by aligning the optical axis of
both YVOs in the horizontal plane at an angle of approximately 45◦ with respect
to the propagation direction of the beam but orthogonally to each other, such
that the two crystals both deflect H but into opposite directions. After the first
YVO separated the incoming light into two beams of H- and V -polarization, the
polarization of the two is flipped by a HWP and the new H-beam is redirected
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then by the second YVO into the other direction. The sum over the two deflections
then defines the separation of the slits. The fact that both beams were deviated
ensures that both wavepackets propagate the same optical path and are therefore
still able to interfere. They are then passing through a parted waveplate, which
only swaps the polarization of one slit side while the other one remains unchanged,
such that afterwards both slit sides are vertically polarized, allowing interference.
This setup has the advantage that not only a small part of the incident light
reaches the interference region , since, in contrast to the double slit experiments
usually considered, no light is absorbed by the mask defining the two slits.

3.3.2 Weak measurement implementation

For the experimental implementation of the weak measurement we weakly couple
the photon’s momentum with its polarization and postselect on the position, as
it was already done before [6, 7]. This enables us to observe the average photon
trajectories, where no further measurement apparatus is needed as the photon
itself encodes the pointer in its polarization [20].

For this first the polarization of the two beams is again changed via a QWP
rotating the V -states into P -polarized ones. Second, the weak measurement is im-
plemented by another YVO, which separates H and V polarization and therefore
couples the transverse momentum of the photon p̂x (system observable) to the
polarization in the H/V -basis (pointer variable) via the interaction Hamiltonian
Ĥ = εp̂x ⊗ σ̂z. The weak interaction strength ε is given by the thickness of the
YVO and the tilt of the crystal relative to the propagation direction as they define
the separation of the H- and V -polarized light after the crystal.

Performing the weak measurement on an initial system pointer pair |Ψ〉 =
|ψS〉⊗|P 〉 and then postselecting on a certain position q yields for small interaction
strength ε� 1 as in Eq. (1.51)

|ΦF
M〉 = 〈q|e−

i
~ ˆεpx⊗σ̂z |ψS〉|P 〉

=
1√
2

(e−
i
~ εpw |H〉+ e

i
~ εpw |V 〉)

∝ 1√
2

(|H〉+
2i
~ εpw |V 〉),

(3.35)

where pw = 〈q|p̂x|ψ〉
〈q|ψ〉 is the weak value of the transverse momentum expressing

the transverse Bohmian velocity via vBx(q) = Re[pw]/m (see Eq. (2.3.1)). This
means that the polarization of photons arriving at a certain position is rotated
by a phase ϕx in the xy-plane of the Bloch sphere (see Fig. 3.8) proportional to
the weak value and the interaction strength ϕx ∝ εpw. The weak value can then
be read off via the measurement of the expectation value of conjugate pointer
variable σ̂y. This measurement is implemented by another QWP at 45◦, which
does not change the P component of the state but rotates |R/L〉 to |H/V 〉, and
another YVO which now again separates H and V . The two together therefore
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Figure 3.9: Entangled photon source as seen from above. Double lines stand for
a lower and an upper beam.

don’t deflect right handed light while left handed light is redirected downwards so
that the at a given position q a single photon detector – in our case an avalanche
photo diode (APD) – detects the number of arriving R-polarized photons IR while
another APD directly underneath the number of of L-polarized photons IL. The
expectation value of σ̂y is then given by

〈σ̂y〉 =
IR − IL
IR + IL

. (3.36)

As the initial pointer state had an expectation value of 〈P |σ̂y|P 〉 = 0, the trans-
verse Bohmian momentum is given via Eq. (1.54) by

kx = Re[pw] =
1

ε

[
IR − IL
IR + IL

]
. (3.37)

These measurements are performed in the interference region by a fiber array
connected to 2× 10 APDs movable in x- and z-direction allowing us to scan the
whole space. This possibility of performing postselections on every position in the
interference region makes possible to observe the Bohmian velocity at any point
and enables a reconstruction of the average Bohmian trajectories.

3.3.3 Entangled photon source setup

Since a high number of photons is needed in order to reconstruct the Bohmian
photon trajectories, a source producing entangled photon pairs at high photon
rate is needed. For this we adapt the source of Evans et al. [100].

Main setup In order to obtain the maximally entangled Bell-state
|ψ〉 = 1√

2
(|H〉|H〉 + |V 〉|V 〉) two photons are created via SPDC at two sites in

a PPKTP crystal and are then redirected by a set of birefringent crystals (cal-
cites), such that their point of creation becomes indistinguishable. The exact
setup can be seen in Fig. 3.9. Plus polarized laserlight of 405nm wavelength
|P 〉 = 1√

2
(|H〉 + |V 〉) is sent onto a halfwaveplate (HWP1) in order to be able to
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manipulate the amplitudes of the H- and V -polarized parts later on, such that
the resulting state is

|ψi〉 = a|V 〉+ b|H〉, (3.38)

where |a|2 + |b|2 = 1 and a, b ∈ R.

The light then traverses the first birefringent calcite crystal (xP-crystal) where
the horizontally polarized part is redirected in the x-direction by 4.16 cm (Eq. (3.20)),
such that there are now two beams, denoted with the indices C and F for close
(right hand side in propagation direction) and far (left hand side in propagation
direction). The difference in the distance traveled results in a path and phase
difference difference ϕ1 between |H〉 and |V 〉

|ψF 〉 = |H〉, |ψC〉 = |V 〉. (3.39)

The following HWP2 is parted such that only the far beam is affected by the
45◦-HWP, which flips H to V, whereas the close beam is only traversing a glass,
such that no phase difference is emerging. The two states then read

|ψF 〉 = |V 〉, |ψC〉 = |V 〉, (3.40)

which is important, because only vertically polarized light will be down converted
in the PPKTP (see section 3.2.2). At each site two 810nm photons are created out
of one 405nm V -polarized photon via collinear SPDC type II (see section 3.2.2),
one horizontally and one vertically polarized:

|ψF 〉 = |VF 〉 ⊗ |HF 〉, |ψC〉 = |VC〉 ⊗ |HC〉. (3.41)

Light of the pump laser which did not undergo downconversion is reflected out of
the path of the photon pairs by a dichroide. The photon pairs are then redirected
in the y-direction to a lower (l) and a upper (u) photon by the yc-crystal, such
that the four spatial positions correspond to polarization states as follows (see
second picture in the cross section shown in Fig. 3.9)

|ψFu〉 = |HF 〉, |ψCu〉 = |HC〉,
|ψFl〉 = |VF 〉, |ψCl〉 = |VC〉.

The four of them then traverse another retarder combination where there is a
45◦-HWP in the far upper and close lower beams while a 0◦-HWP is in the others
(see third picture in the cross section shown in Fig. 3.9). The resulting states are

|ψFu〉 = |VF 〉, |ψCu〉 = |HC〉,
|ψFl〉 = |VF 〉, |ψCl〉 = |HC〉,

where now it is important to see that both V -polarized photons come from the
far SPDC site, while the H-polarized ones emerge from the other site. The lower
and upper beams are then brought back together via a third birefringent calcite
crystal (xc-crystal) which redirects the close H-polarized beam onto the far V -
polarized one, causing another path difference and phase ϕ2. The single photon
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detectors to which the upper and lower beam are sent, after having traversed a
set of exchangeable filters and the lower beam being redirected by a mirror, then
indistinguishably observe either both a horizontally polarized photon from the
close SPDC site with intensity proportional to the amplitude of the light shining
in to the close side, hence ∝ |a|2, and phase ϕ2 or a vertically polarized one from
the far SPDC site with intensity ∝ |b|2 and phase ϕ1, which results in a final state

|ψ〉 = a|HH〉+ beiϕ|V V 〉, (3.42)

with ϕ = ϕ1 − ϕ2 is the phase difference between the close and far beam. As
we can see, the arrangement is such that the close as well as the far beam travel
once the longer way in the two crystals in order to not reduce the coherence of
the photons when they arrive at the detectors. Nevertheless, we have to keep this
phase and path length differences in mind for a later search for errors.

Eliminating the phases in between the two components from two downconver-
sion sites and detecting equally photons from both sites by adjusting the ampli-
tudes a and b to compensate for different coupling efficiencies then results in the
desired Bell state

|ψ〉 =
1√
2

(|HH〉+ |V V 〉). (3.43)

The photons coupled into single mode fibers are sent to the tomography stage,
where their state is analyzed, such that the lower beam corresponds to coupler
and arm A of the tomography while the upper one corresponds to B.

Polarization compensation Due to random stress and imperfections in the
singlemode fibers, it must be taken into account that the polarization of each arm
is rotated by each fiber by a random unitary transformation Û , e.g.

Û =

(
cos(α) eiθ sin(α)
sin(α) −eiθ cos(α)

)
. (3.44)

Therefore the uncompensated state arriving at the tomography is

|ψ′〉 =(Û1 ⊗ Û2)
1√
2

(|HH〉+ |V V 〉)

=
1√
2

[(c1c2 + s1s2)(|HH〉+ ei(θ1+θ2)|V V 〉)+

+ (c1s2 − s1c2)(eiθ2|HV 〉 − eiθ1 |V H〉)],

(3.45)

where ci = cos(αi) and si = sin(αi) and which is not correlated in the H/V -basis
as required for the trajectory experiment anymore. The entanglement can be re-
cuperated by adjusting the unitary transformations such, that the polarization
of each photon is rotated by the same angle α1 = α2 = nπ

2
in each fiber. This

can be realized by using manual polarization controllers (so called ’bat-ears’) for
each fiber, which coil the fiber and thereby induce stress, which in turn leads to
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birefringence. The birefringence introduces a retardation between different polar-
ization components of the wave, such that three coils in a row and the adjustment
of stress can generate any desired polarization state from any arbitrary input po-
larization [101].

It is a common procedure to adjust the fibers such that they only conserve two
states of a linear polarization basis and hence control the angles αi and compensate
the remaining phase difference with an additional device (see section 3.3.3). For
the adjustment a H-polarizer is inserted into the source directly in front of one
of the couplers where the photons are fed into the fibers, and the bat-ears are
adjusted in such a manner that all photons in this arm are detected to be H-
polarized by the tomography, when measuring σ̂z. Applying this procedure and
then blocking one SPDC-site in the source, we saw that not all photon pairs were
detected to be HH- or V V -polarized, according to the blocked site, but around 3%
of the photons from the A-arm were detected also V H or HV respectively, even
though the fibers did not rotate the state anymore. This can only be explained by
the mirror which redirects the photons in arm A onto the coupler. If the mirror
is rotating the beam not only around a vertical axis, but also around a horizontal
one, the eigenstates of the polarization are not H and V anymore but rotated by
another unitary. This can easily been undone by adjusting the bat-ears such, that
when blocking one SPDC site all photon coincidences are detected to be HH or
V V , according to the blocked site, as it is only important that the state after the
fibers in the tomography or the double slit has the correct polarization correlation.

Phase compensation Any difference in optical path length as well as the fiber
connection to the tomography and the double slit establishes a phase between the
components emerging from the two SPDC sites. One way to eliminate the phase is
to benefit from the birefringent properties of two Y V O4 crystals. Applied behind
each other with one optical axis in horizontal, one in vertical direction and tilted
in opposite directions the first YVO (horizontal optical axis) induces a phase shift
between H and V corresponding to the angle dependent extraordinary refractive
index ne(α) (see Eq. (3.16)), while the second one refracts only via Snell’s law
counteracting the separation between the beams by the first YVO and hence pre-
serving spatial coherence.

Since it is the same to introduce a phase between the components of SPDC of
the state as between the two polarizations in one arm, another way to eliminate
the phase is to introduce a thin glass plate of thickness dG and refractive index
nG plate into one of the arms (see Fig. 3.9), such that one photon travels a longer
optical path ξ = n · dG due to a greater optical index of the glass plate (coherence
will be regarded later in section 4.3). The effective thickness of the glass plate
can be adjusted by rotating it and therefore achieving a thickness dependent of
the rotation angle β. The resulting optical pathlength difference then reads

∆ξ =
(n0 − nG) · dG

cos(β)
, (3.46)
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where n0 ≈ 1 is the refractive index of air. The introduced phase is then given by
∆ϕ = 2π∆ξ

λ
.

Obviously, for the pure phase compensation it is easier to only employ the
YVO system as it is independent of the source setup and can be used either in the
tomography or the double slit. Nevertheless, the glass plate will be needed later
in order to increase coherence (section 4.3) and hence its phase compensation is
also to be considered.

3.3.4 Tomography and Coincidence Detection

Tomography The generated photon state is analyzed by the tomography setup.
Here a measurement of σ̂x, σ̂y, and σ̂z can be performed on each photon of the pair
at the same time (Fig. 3.10). A combination of an HWP, a QWP and a polariz-
ing beamsplitter realizes the measurement in the three direction by appropriate
settings of the waveplates.

QWP HWP

σ̂x 0◦ 22.5◦

σ̂y 45◦ 22.5◦

σ̂z 0◦ 0◦

With these settings the positive eigenvector of the measurement is rotated into
|H〉 and the negative into |V 〉 such that the PBS, which splits incoming light into
its horizontal and vertical component, is projecting on the positive or negative
eigenvalue of the chosen measurement direction.

Measuring all combinations of σ̂i ⊗ σ̂j on the photon pair, enables a complete
scan of the state and a full reconstruction of the density matrix via Eq. (1.23)

ρ̂ =
∑
i,j

Eijσ̂i ⊗ σ̂j
4

, i, j = 0, 1, 2, 3 (3.47)

where Eij is the expectation value of the measurement of σ̂i⊗σ̂j and {σ̂0, σ̂1, σ̂2, σ̂3} =
{11, σ̂x, σ̂y, σ̂z}.

In order to correctly reconstruct the density matrix of the entangled photon
state which will be later used for the observation of the Bohmian trajectories and
the polarization measurements, it is necessary to pay attention to the coupling
efficiencies for measurements in different bases. Firstly, due to the rotation of the
waveplates it is possible that the coupling improves or decreases at the different
ports of the PBS for measurements in different bases. Hence, the detected number
Ñij of pairs, where the first photon arrives at i (e.g the H-port for σ̂z measurement
on the first photon in arm A) while the second one arrives at the j-port, is governed
by the detection efficiency ηij via

Ñij = ηij ·Nij, i, j ∈ {H,V, P,M,L,R}, (3.48)

with Nij being the actual number of conincidences of ports i and j. The relative
coupling efficiency can be easily determined by sending only polarized light into
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Figure 3.10: Illustration of the tomography setup

the two arms of the tomography such that at a specific choice of measurement
basis in an arm, an equal amount of light should be collected by the two couplers
behind the PBS. Thus, for σ̂z a polarizer of one of the other directions y or x, e.g
a P -polarizer, is needed in front of the corresponding coupler in the source. The
difference in the distribution of the detected coincidences from 1

4
: 1

4
: 1

4
: 1

4
in

the four ports then determines the efficiencies for the four ports in the chosen basis.

A density matrix reconstruction based on the measured expectation values of
all σ̂i ⊗ σ̂j via Eq. (3.47) can lead to not physical reconstructed states, where
the density matrix does not fulfill the conditions of a density matrix explained in
section 1.1, as the reconstruction is limited by the experimental issues like losses,
noise or the coupling efficiencies. A method to find the closest physical state to
the measured data is to perform a maximum likelihood estimation from standard
statistics. For this the algorithm of Shang et al. [102] is used.

Before performing a complete tomography it is useful to have a look at the
correlations in xx-, yy- and zz-directions, the expectation values of σ̂i ⊗ σ̂i in all
three bases read off from the outcomes at the transmission (T) and reflection (R)
ports of the PBSs of the tomography setup

κ =
NRR +NTT −NRT −NTR

Ntotal

, (3.49)
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3.3 Experimental setup

where Ntot is the total number of coincidences and R ∈ {V,M,L} and T ∈
{H,P,R}. For the desired state (3.43) the outcomes here should be

κxx = 1, κyy = −1, κzz = 1. (3.50)

The uncompensated state (3.42) reads in the three bases

|ψ〉 = a|HH〉+ beiϕ|V V 〉 =

= (a+ beiϕ)(|MM〉+ |PP 〉) + (a− beiϕ)(|PM〉+ |MP 〉)
= (a− beiϕ)(|LL〉+ |RR〉) + (a+ beiϕ)(|RL〉+ |LR〉).

(3.51)

with |a|2 + |b|2 = 1 and a, b ∈ R. This yields to correlations in the three different
bases of

κxx = 2ab cos(ϕ), κyy = −2ab cos(ϕ), κzz = 1. (3.52)

For a = b = 1√
2

and ϕ = 2πn with n ∈ Z this results in the desired correlations.

These three correlations let us estimate the proximity to the desired entangled
state. The fidelity, a measure of distance between two arbitrary quantum states
ρ̂1 and ρ̂2 F = tr(

√√
ρ̂1ρ̂2

√
ρ̂1) simplifies for ρ̂1 being pure to [10]

F(|ψ〉, ρ̂) =
√
〈ψ|ρ̂|ψ〉. (3.53)

Since for the Bell states the non diagonal correlations are all zero, the density
matrix of the created state is ρ̂ = 1

2
(11 +κxxσ̂xx +κyyσ̂yy +κzzσ̂zz) and the fidelity

simplifies to

F =
1

2

√
1 + κxx − κyy + κzz. (3.54)

Coincidence detection Only photon pairs which are generated coherently in
the SPDC process result in the entangled state which is necessary in order to
perform the trajectory measurement later in the experiment. In order to know
exactly which incoming photons belong to a pair a coincidence unit is needed.
This unit, designed and implemented by Lukas Knips, receives electrical pulses
from the APDs to which the photons are sent, and then identifies those as a pair
whose both signal starts within a clock cycle of certain length in time.

The coincidence detection unit is configured to record the four channels of sin-
gles from each of the four ports the photons reached via transmission or reflection
at each side, as well as four coincidence channels providing the number of pho-
ton pairs whose singles arrived together in between a certain time interval at the
detectors. From a purely statistical point of view, when s1 singles are detected
in one channel in a time interval t1 and s2 singles in another channel in a time
interval t2 then, without having an actual photon pair originating from the SPDC
process, the number of detected accidental coincidence counts is given by

ζ1,2 =
s1

t1
· s2

t2
· tC · tM

tM=t1=t2=
s1 · s2 · tC

tM
(3.55)
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3 Experimental implementation

in a time interval tM with a coincidence interval set to tC . This causes a loss of cor-
relation because the accidentals wash out the contrast between the coincidences
the Bell state has and those it does not have. For approximately equally dis-
tributed singles, the accidentals are also approximately the same in each channel
ζ and the correlation decreases

κacc =
(NRR + ζ) + (NTT + ζ)− (NRT + ζ)− (NTR + ζ)

Ntotal + 4ζ

=
NRR +NTT −NRT −NTR

Ntotal + 4ζ

(3.56)

Therefore, it is purposeful to decrease the number of accidentals by reducing the
coincidence time interval, which was finally set to 4 ns.
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4 Alignment of the photon source

In order to setup the source a proper alignment of all the optical components,
especially the four birefringent crystals, is necessary. For this two laser beams
are used. One is the pump laser, which travels from left to right in Fig. 3.9 with
pump wavelength λp = 405 nm, from now on called the “pump beam”. Since it is
not possible to observe the position of the single photons generated in the SPDC
process, laser light of the wavelength of the collected photons λc = 810 nm is sent
backwards through the collection optics to make alignment possible. This beam,
travelling backwards in the setup is from now on called the “collection beam”.
The goal of the alignment lies in the adjustment of the couplers and crystals in
such a manner that the four components of the collection beam perfectly overlap
with the two parts of the pump beam in the center of the PPKTP, all six of them
having their focus at that point.

4.1 Beam focus alignment

Since the average photon numbers in the signal and idler mode are proportional to
the intensity of the pump field, focusing the beam into the center of the PPKTP
will increase the number of photon pairs [92]. Hence, the foci of the pump beams
as well as the ones of the collection beams have to be measured and adjusted very
precisely, such that the PPKTP can be centered onto the average focus position.

For the measurement of the beam profile a CCD camera is used, taking images
of the beams at various z-positions. The beam parameters from Eq. (3.6) can then
be determined by the extraction of the standard deviation of the intensity profile
which provides the beam radii in x- and y-direction. Then the beam parameters
M2

x,y, w0x,y and z0x,y can be determined via a fit of the data onto Eq. (3.6) via the
Levenberg-Marquardt algorithm. In order to place the PPKTP as best as possible
in the waist of pump and collection beam, appropriate focal lengths are chosen
for the lenses of the fiber in- and outcouplers, followed by a fine adjustment of the
relative distances of the respective coupler lenses.

Since the collection beam traverses more crystals than the pump beam and is
also divided into more parts, its alignment therefore is more complicated. The
idea is to first setup the collection side of the source and then adjust the pump side
accordingly. As for the determination of the beam parameters beam radii close
to the focus as well as outside the Rayleigh length are needed, it is problematic
to determine the waist position while the PPKTP is inserted at the focus, since
the camera cannot be placed there. Due to the different refractive index of the
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4 Alignment of the photon source

(a) Beam parameters for close SPDC site

pump close collection lower collection upper

ω0x = 39.1 µm ω0x = 44.8 µm ω0x = 48.9 µm
z0x = 0.5 mm z0x = 0 mm z0x = 0.4 mm
M2

x = 1.71 M2
x = 1.63 M2

x = 1.94

ω0y = 50.2 µm ω0y = 43.2 µm ω0y = 68.3 µm
z0y = 2.0 mm z0y = −0.4 mm z0y = 3.3 mm
M2

y = 2.20 M2
y = 1.76 M2

y = 2.94

(b) Beam parameters for far SPDC site

pump far collection lower collection upper

ω0x = 38.6 µm ω0x = 49.4 µm ω0x = 45.1 µm
z0x = −0.2 mm z0x = 0.3 mm z0x = −0.1 mm
M2

x = 1.68 M2
x = 2.19 M2

x = 2.05

ω0y = 51.0 µm ω0y = 49.9 µm ω0y = 49.8 µm
z0y = −1.6 mm z0y = −2.0 mm z0y = 0.2 mm
M2

y = 2.23 M2
y = 1.96 M2

y = 2.11

Table 4.1: Beam parameter in x- and y-direction for the three beams overlapping
at the two SPDC sites

PPKTP, the focus position of the beam in the PPKTP is shifted compared to
its position in free space. Hence, after having inserted the xc- and yc-crystals the
beam profiles of the four collection beams were measured without PPKTP and
then the shift of the focus position caused by the inserted PPKTP was obtained
from a fit with the focus position z0 as the only free parameter. This made it
possible to find the final average focal position of the four collection beams on
which to center the PPKTP in z-direction. After this position for the collection
couplers was fixed, the longitudinal position of the pump focus had to be aligned
accordingly. This was achieved by repeating the same procedure in forward direc-
tion. Due to spatial restrictions it was not possible to take images of the beam
profile far away from the focus position of the pump beam, which decreases the
accuracy of the fitted parameters. The measured beam parameter of pump and
collection beam for the close and far side are given in table 4.1.

We noted that that for points close to the focus position the fitted beam radius
was always bigger than the the focus radius determined via a Gaussian fit onto the
intensity profile of a picture taken close to the focus position. While the radii used
for the fit were determined by the standard deviation of the intensity distribution,
these distribution consisted of an approximately Gaussian distribution, with a
significant broadening at the lower ends of the edges (see Fig. 4.3 x-direction).
Hence, it can be assumed that the obtained standard deviation overestimates
the width of the part of the intensity which is relevant for the downconversion
process. An average waist of ω0G = 40.3 µm could be determined for the collection
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4.1 Beam focus alignment

(a) Beam profile in x-direction

(b) Beam profile in y-direction

Figure 4.1: Fitted and measured beam profile of the collection and pump beam
for the close SPDC site. The measured data is indicated with a cross.
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4 Alignment of the photon source

(a) Beam profile in x-direction

(b) Beam profile in y-direction

Figure 4.2: Fitted and measured beam profile of the collection and pump beam
for the far SPDC site. The measured data is indicated with a cross.

72



4.1 Beam focus alignment

beams. The intensity profiles of the close upper collection beam (Fig. 4.1) did
not only show the broadening at the base of the distribution but also large tails
in y-direction (see Fig. 4.3 y-direction). Therefore, the determination of the z-
distribution of the beam radius was not trustful, such that for the determination of
the z-position of the PPKTP this focus position was not deemed reliable and thus
only weighted with 50%. The measured evolutions for the close and far beams in
x- as well as in y-direction can be seen in Fig. 4.1 and Fig. 4.2.
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Figure 4.3: Measured intensity profile together with the Gaussian fit for the
upper close collection beam. All collection beams showed a significant broadening
at the lower end of the edges. Only the close upper beam additionally showed
large tails in y-direction.

The root mean squared (RMS) a measure for the goodness of the fit, with
RMS =

√∑
i(f(zi)− yi)2 where yi are the measured data to corresponding zi

and f(zi) the value achieved from the fit 10 µm for the collection beam, for the
pump beam it was lower.
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4 Alignment of the photon source

4.2 Angular and spatial overlap of the beams

Apart from the adjustment of the waist position in z-direction it is also necessary
to overlap the collection beams in x- and y-direction as well as in their angle, as
a good overlap of the beams results in a higher collection of coincidences, because
both couplers then collect the collinearly emerging SPDC photons from the same
spot.

Responsible for the spatial overlap are the xc- and yc- crystals, which both can
be adjusted such that they separate H- and V - polarization. As the direction
of deflection is determined by the direction of the optical axis relative to the
propagation direction, the separation of the polarizations is dependent on the
orientation of the crystal. Hence, considering a x-crystal, which is constructed
such that it deflects H-polarized light in the horizontal plane, a rotation around
the y-axis changes the separation of the beams, whereas the polarization of the
two beams can be fine tuned by rotation around the x- and z-axes. A rotation of
the crystal around these axes is also responsible for a height difference of the two
exiting beams, as it defines the plane of deflection.

Since the crystals do not change the propagation direction of the beams, but
their effect on the beams depends on their propagation direction, the beam is
aligned parallel to the horizontal plane before the crystals are inserted and again
fine aligned afterwards. For the alignment again a CCD camera is used, where
the separation of two beams can be read off via Gaussian fits to their intensity
distributions on the screen. The deviation of the propagation direction from
a horizontal plane can be determined by taking images of the beam profile at
various z-positions and then corrected by tuning the angle of the couplers and the
mirror.

The alignment was started with the xc-crystal. An alignment such that H and
V are the eigenaxes of the crystal transformation could be performed by only
letting e.g. H-polarized light enter the crystal and then minimizing the amount
of V -polarized outgoing light by rotating the crystal. At the same time it has to
be ensured that there is no height difference between the outgoing beams, which
is why the two axes of rotation x and z are walked against each other, one mini-
mizing the height difference, the other defining H and V as eigenaxes. The same
procedure is repeated for the yc-crystal such that the four beams are merged to
two. After fine tuning the angle of the propagation direction the two times two
beams overlap close to their focus positions as shown in Fig. 4.4. The size of the
foci is taken from the previous section. As the two images are recorded at z-planes
separated by 2.5cm it is possible to extract the angular deviation of the beams
from the position difference between the two images.

For the overlap of the pump and collection beam it is important that the col-
lection beam is separated by its xc-crystal by the same amount as the pump beam
is by its xp-crystal, which is why when the alignment is repeated for the pump
beam the separation of the beams has to be exactly adjusted to the separation
obtained by the xc-crystal, which is around 4.16 mm.
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4.2 Angular and spatial overlap of the beams
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Figure 4.4: Overlap of the upper and lower collection beam at the focus position
at two different z-positions.

As it is not possible to determine the exact x-positions of the collection and
pump beam with respect to each other, this can be fine tuned after the SPDC
crystal is inserted and the source is connected to the APDs, since small changes in
position do not change the previous adjustments of the setup. The pump coupler
is then moved in x-direction such that the number of singles and coincidences was
maximized in order to increase the overlap of pump and collection beams. In the
course of further alignment steps, the coupling was repeatedly further optimized
by tuning the collection couplers’ angles and positions against each other, always
with the goal to get more coincidences at the same number of singles, hence,
decreasing the rate Rsc = coincidences

singles
, which means increasing the overlap of the

parts of the beams containing corresponding photon pairs.
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4 Alignment of the photon source

4.3 Sources of coherence reduction

After the alignment described in section 4.2 was completed a significantly bet-
ter zz-correlation, κzz > 0.9, was obtained compared to the yy- or zz-direction
|κxx,yy| < 0.7.

This effect can be explained by a loss of coherence. The created state can be
described with all its degrees of freedoms via

|Ψ〉 =
1√
2

(|H,R1〉|H,R2〉+ |V,R3〉|V,R4〉), (4.1)

with |a, b〉 = |a〉 ⊗ |b〉 = |a〉|b〉 and where the |Ri〉 denote the other degrees of
freedom like wavelength or traveled optical path which can encode the information
about the SPDC-site. Expressing this state with its density matrix and performing
a partial trace with respect to the not measured degrees of freedom, the density
matrix in the polarization basis of the two qubits {|HH〉, |HV 〉, |V H〉, |V V 〉} reads

ρ̂ =
1

2


1 0 0 〈R1|R3〉〈R2|R4〉
0 0 0 0
0 0 0 0

〈R3|R1〉〈R4|R2〉 0 0 1

 (4.2)

Hence, the overlap of the wavepackets in the space of the different degrees of
freedom is relevant for the degree of entanglement. With decreasing overlap of
the wavepackets, the two SPDC sites become more and more distinguishable
such that entanglement decreases until a mixed state of 50% |HH〉 and 50%
|V V 〉, is reached. This loss of coherence is reflected by a decrease of correlations
κxx = −κyy = Re[〈R1|R3〉〈R2|R4〉] compared to κzz = 1.

The overlap of the wavepackets in time is given by the longitudinal coherence
length

lC ≈
λ2

∆λ
(4.3)

where λ = 810 nm= λc is the collection wavelength. The width of the spectral
distribution is not that easy to specify. For this the spectral emission of the SPDC
photons from section 3.2.2 has to be regarded. Since the adjusted collection beam
has a divergence of θdiv = λ

πw0
≈ 0.3◦, the deviation of the collected wavelength

from λc is in a perfect collinear process with perfect collection not larger than
1 nm. But as it was demonstrated in section 3.2.2 the wavelength of the col-
lected photons is dependent on the angle between the pump beam and the axes
of the PPKTP as well as on the angle of the collection beam. This is why here
a larger spectral width is chosen corresponding to the FWHM of a spectral filter
later introduced into the setup ∆λ ≈3 nm. This leads to an coherence length of
lC ≈ 219 µm , which should be significantly greater than differences in traveled
optical path.

Furthermore, the wavepackeges also have to overlap in their spectral degree of
freedom, such that a difference in the center wavelength of the spectra of the
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4.3 Sources of coherence reduction

components can also lead to a loss of coherence. Additionally, as a difference in
wavelength of the collected components introduces also a pathlength difference, it
can lead to the phase between the components no longer being well-defined. This
can be caused, e.g. by small spectral fluctuations of the pump laser.

4.3.1 Tilted crystals

Since all used waveplates are zero order, their passage does not lead to a difference
in optical path length. Also the y-crystal does not introduce a path difference be-
tween the close and the far beam such that it does not disturb the indistinguisha-
bility of the SPDC sites. The effective path difference ∆ξ can therefore come from
differences in optical path in the two x-crystals at different wavelengths λp and
λc. ∆ξ is hence the difference between the path difference of the ordinary and
extraordinary beam in the pump x-crystal and the corresponding path difference
in the collection x-crystal, ∆ξ = |ξfar − ξclose| = |∆ξp −∆ξc|.

For a perfectly aligned source the calculated optical path difference ∆ξ is around
34 µm≈ 42λc, since the beams traverse the two x-crystals at different wavelengths,
before and after the downconversion, such that the optical pathlengths differences
are not completely canceled out. It is a convenient property of the calcites, that
the differences in optical path traveled by the 810 nm and 405 nm light is that
small. However, if the crystals are slightly tilted, the differences in the optical
pathlengths change, as now the ordinary as well as the extraordinary beam is
deflected by Snell’s law and the traveled distances inside the crystal where the
two experience different refraction indices now depend on the incident angle α.
Fig. 4.5 shows the change in the optical path difference when the two x-crystals
are rotated around the z-axis by the same angle α but in different directions.
As we can see, at angles around 1◦ to 2◦ easily path differences in the order of
magnitude of the coherence length are reached. As a rotation by a that small
angle can not be excluded, this is a possible explanation for the observed loss of
coherence.

4.3.2 Collection of different wavelengths

A possible reason of spectral decoherence are correlations between emission angle
and spectrum. If the components of a photon’s state are collected at the two sites
from different regions and under different angles, this may arise differences in the
spectrum of these components. If the center wavelengths of two photons arriving
at the coupler are further apart compared to their spectral width, it is obvious that
the wavelength of the arriving photon encodes the which-site information, which

reduces the entanglement, since 〈R1/2|R3/4〉 ∝ exp− (λ1/2−λ3/4)2

4∆λ2
< 1, assuming

Gaussian distributions for the wavelengths.

Hence, according to Eq. (4.2) the correlation κxx ∝ exp− (λ1−λ3)2+(λ4−λ4)2

4∆λ2
, such

that already small deviations in the center wavelengths lead to a loss of coherence.
A correlation of 0.94 would therefore be reached when the center wavelengths of
the components of the lower as well as of the upper beam are further off than
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4 Alignment of the photon source

Figure 4.5: Additional optical path difference |∆ξ(α) − ∆ξ(0◦)| arising from
tilted crystals

1.35 nm. The correlation of 0.7 could then be explained by coupling different
wavelengths at both sites with center wavelengths further apart than 2.5 nm.

It has to be also kept in mind that the photons are traveling different paths
in the setup, such that the non-equal wavelength result in different optical paths
for distinct photons, which can affect coherence. The change of the optical path
differences ∆ξ(λ) compared to ∆ξ(λc) at the degenerate wavelength can be cal-
culated and is shown in Fig. 4.6 for wavelengths from 805 nm to 815 nm. The
change in optical pathlength difference compared to the degenerated case is about
0.5 µm for wavelength λ = λc ± 5 nm. Since this is very small compared to the
coherence length, decoherence due to optical path differences must come from
tilted crystals.
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4.4 Increasing coherence

Figure 4.6: Additional optical path difference ∆ξ(λ)−∆ξ(810 nm) arising from
the collection of non degenerated photon pairs.

4.4 Increasing coherence

In order to eliminate this arising loss of coherence different ways of compensa-
tion were implemented. On the one hand, there were filters to adjust the center
wavelength and on the other hand glass plates were inserted for pathlength com-
pensation of one arm.

Glass plate An insertion of a 1mm glass plate of refractive index nG ≈ 1.52 into
the far beams before the PPKTP crystal (see Fig. 3.9) lifted up the xx-correlation
from ∼ 0.6 up to ∼ 0.9. When the glass plate is rotated, the xx-correlation os-
cillates determined by different influences. The correlation is observed to change
quickly following the cosine of Eq. (3.51) due to the variation of the phase due
to the rotation of the glass plate, while the maxima of this oscillation decrease
slowly, indicating the influence of growing decoherence. It was noted also that
this improvement to 0.9 was only visible when the glass plate was inserted into
the far arm and not into the close one, which seems to indicate that the close
arm traveled the longer optical path. Glass plates of different thicknesses were
tested, resulting in best xx-correlation of the 1mm glass plate. A glass plate of
dG ≈ 0.1 mm thickness enabled only correlations |κxx| ≤ 0.56 and another one of
thickness dG ≈ 0.3 mm |κxx| ≤ 0.8. Fig. 4.7 shows the calculated path difference
introduced by glass plates of various thicknesses. The 1 mm glass plate hence
induces a path difference of approximately 500 µm , which would correspond to a
tilt of the x-crystals of about 3◦ (Fig. 4.5).

The problem with this method is that the rotation of the glass plate also slightly
changes the position of the beam, which can affect the coupling efficiency of
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4 Alignment of the photon source

the photons at this site. Consequently, different wavelengths can be collected.
Changes in the relation of amplitudes of the different SPDC sites can be compen-
sated by the initial HWP each time the glass plate is rotated to a maximum of
xx-correlation.

With the the glass plate it was possible to increase the correlation to |κxx,yy| ≈
0.9, but not above. One reason for this could be that the employed 1 mm glass
plate is to thick and therefore induces a too large pathlength difference, whereas
the 0.3 mm are still too thin.
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Figure 4.7: Additional path difference ∆ξ(β) arising from a rotatable glass plate
of various thickness dG only traversed by photons of one SPDC site.

Filters Different filters were tested in order to firstly reduce the spectral width
of the photons and secondly, as the PPKTP is manufactured to produce prefer-
ably 810 nm collinear photon pairs, to optimize the coupling and improve the
coincidence-photon-rate.

The initial measurements were performed with edgepass filters, only transmit-
ting wavelengths above 750 nm. It was observed that no pump photons were
reaching the detection, as all detected singles and coincidences vanish when the
waveplate in front of the PPKTP is flipped, such that no SPDC will happen
anymore. Taking the filters out of the setup did not change the maximum cor-
relation at all. This indicates that they did not affect the spectral properties of
the downconverted photons significantly and also without them the pump beam
is sufficiently excluded from the collection. Since, besides the tiny shift in posi-
tion of the beam by the insertion of an optical component, also the angle of the
emerging photons can be changed by filtering the wavelength due to correlation
between emission angle and wavelength, after each insertion or rotation of a filter
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4.4 Increasing coherence

a new iteration of the coupling optimization was needed.

In the next step, in order to ensure the collection of degenerate photons, band-
pass filters of 10 nm FWHM centered around 810 nm were inserted. No improve-
ment of the correlation was found. Also changing the temperature of the PPKTP
from 25◦C to 50◦C, which influences the wavelength of the generated photon pairs
(section 3.2.2), did not affect the rate of detected photons, so it can be assumed
that the filters’ width was still too large.

Finally, a narrower bandpass filter with 3 nm FWHM centered around 810 nm
was tried. As explained before (see section 3.1.2) the center wavelengths of band-
pass filters are highly dependent on the angle of incidence which is why we only
replaced the filter before the mirror in order to assure the same filtering for both
photons with only a single degree of angular adjustment. To adjust this angle,
the PPKTP temperature is changed from 25◦ to 50◦ while the collected singles in
the couplers are counted. A maximum of singles then corresponds to the center
wavelength of the filter. Since the PPKTP creates collinear degenerated photon
pairs only at one specific wavelength, the maxima of singles of both arms must lie
at the same temperature if the filter transmits the degenerate wavelength, whereas
when a deviating wavelength is filtered the maxima lie apart. Fig. 4.8 shows the
first temperature scan, where both maxima are visibly displaced, whereas after a
little rotation of the filter the maxima were found approximately at the same tem-
perature T ≈ 39◦C. This filter setting improved our correlations to |κxx| ≈ 0.94
at an operating temperature of 39◦C.

The deviation of the temperature from the theoretical calculation Tdeg ≈ 50◦

implies there might be other issues which still have to be checked. This deviation
could be explained by a slight rotation of the PPKTP with respect to the pump
beam changing the temperature dependence of the downconversion process.
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4 Alignment of the photon source

(a) First insertion of the filter. Maxima are not at the same temperature.

(b) Rotation of the filter. Maxima move closer together, which indicates a better
collection of the desired degenerated wavelength.

Figure 4.8: Detected singles as a function of temperature for two different filter
positions of a 3 nm FWHM bandpass filter.
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4.5 Final state tomography

4.5 Final state tomography

A final measurement of the correlations in every basis σ̂i ⊗ σ̂j and a resulting
reconstruction of the density matrix as described in section 3.3.4 yields the density
matrix

ρ̂ =


0.460 0.030 + 0.009i −0.036 + 0.026i −0.462− 0.001i

0.027− 0.001i 0.005 −0.001 + 0.001i −0.040 + 0.018i
−0.036− 0.023i −0.001− 0.001i 0.004 0.030 + 0.023i
−0.462 + 0.001i −0.040− 0.018i 0.030− 0.023i 0.531

 .

The state is illustrated in Fig. 4.9. The negativity (1.28) of this state is N = 0.460
and the fidelity (3.53) between it and the Bell state |Ψ−〉 = 1√

2
(|HH〉 − |V V 〉) is

F = 0.959. The state |Ψ−〉 is only rotated by a phase of π with respect the desired
state, which can be easily corrected via phase compensation with the YVO pair.

Note that the elements of the density matrix obtained by the expectation values
of the measurements in each basis have a statistical error (see Eq. (2.30)) due to
the finite number of counts. This error propagates into the maximum likelihood
reconstruction which was shown to cause systematic errors [103].

The small deviations in fidelity and negativity from the ideal values of the max-
imally entangled Bell-state FΨ− = 1 and NΨ− = 0.5 are due to the reduction of
coherence described in the previous sections. The optimization of this by rotations
of the PPKTP crystal and testing glass plates of thickness 0.3 mm ≤ dG ≤ 1 mm
will be a future task.

Figure 4.9: Illustration of the final density matrix.
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Conclusion

Bohmian trajectories of photons in a double slit interferometer have already been
measured. The entanglement between the which-way information and another
photon’s polarization makes which-way measurements possible. Furthermore, the
possibility of performing the which-way measurement while the photon is in the
interference region or already detected on the screen will enable delayed choice
measurements. Therefore, in this thesis an entangled photon source using sponta-
neous parametric down-conversion in a PPKTP crystal was implemented provid-
ing a Bell-state of fidelity F = 0.959. The calculation of the spatial distribution of
the emission of photons in the down-conversion process gives rise to possibilities
of enhancing the quality of the photon source in the future: A final improvement
of the coupling together with tiny rotations of the PPKTP crystal is expected to
yield higher photon count numbers together with a high degree of entanglement.

Additionally, an alternative method to measure photon trajectories was elabo-
rated. Measuring the wavefront of the photons in the interference region of the
double slit allows the observation of Bohmian trajectories as via weak measure-
ments. For this purpose a wavefront sensor was tested and turned out to be able
to resolve the deviation in the wavefront caused by the main interference maxi-
mum for classical light. This provides a basis for further investigation with single
photons.

With the results of this thesis it will soon be possible to start the experiment on
the observation of Bohmian trajectories connected with which-way measurements.
These can then be spacelike separated from the double slit in order to enable
delayed-choice measurements, providing further understanding of the non-locality
of the Bohmian theory. The explanation of the results of the experiment will then
be a challenging task for the Bohmian theory. Nevertheless, the more knowledge
gained, the greater the chances, that the theory and the long ongoing debate
about it will evolve.
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Abbreviations

APD Avalanche photo diode

BS Beam splitter

BM Bohmian mechanics

FWHM Full width at half maximum

HWP Half-wave plate

PPKTP Periodically poled potassium titanyl phosphate

PBS Polarizing beam splitter

QM Quantum mechanics

QWP Quater-wave plate

SPDC Spontaneous parametric down-conversion

SQM Standard quantum mechanics

YVO Yttrium-vanadate
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fasst zu haben und keine anderen als die in der Arbeit angegebenen Quellen und
Hilfsmittel benutzt zu haben.

Ort, Datum Unterschrift

101




	Abstract
	Introduction
	Standard quantum mechanics and quantum measurement
	Fundamentals of quantum mechanics
	Quantum states in a hilbert space
	Composite systems

	Quantum measurement
	Projective measurement
	Indirect measurement

	Pre- and postselected systems
	Two-state vector formalism
	Measurements on pre- and postselected systems

	Weak value formalism
	Definition of the weak value
	Unusual properties


	Bohmian mechanics and the double slit experiment
	Bohmian mechanics
	Criticism on standard quantum mechanics
	Non-local hidden variables
	Mathematical description of the Bohmian theory

	The Double slit experiment
	Standard quantum mechanics explanation
	Bohmian mechanics explanation

	Observing Bohmian trajectories
	Bohmian velocity as a weak value
	Poynting vector as Bohmian velocity
	Uncertainty analysis
	Demonstration of a wavefront measurement


	Experimental implementation
	Optics
	Gaussian beam
	Optical components

	Birefringence and nonlinear optics
	Propagation of polarized light in birefringent crystals
	Principle of spontaneous parametric down-conversion
	Spatial analysis of SPDC processes in biaxial crystals

	Experimental setup
	Double slit setup
	Weak measurement implementation
	Entangled photon source setup
	Tomography and Coincidence Detection


	Alignment of the photon source
	Beam focus alignment
	Angular and spatial overlap of the beams
	Sources of coherence reduction
	Tilted crystals
	Collection of different wavelengths

	Increasing coherence
	Final state tomography

	Conclusion
	Abbreviations
	Bibliography
	Acknowledgments
	Declaration of authorship

