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Abstract. We present simple and practical quantum solution for secure multiparty
communication protocols, the secret sharing and the communication complexity
and their proof-of-principle experimental realizations. In the secret sharing pro-
tocol, a secret is split among several parties in a way that its reconstruction re-
quires the collaboration of the participating parties. In the communication com-
plexity problem, the goal is to maximize the success probability of the partners
for solving for giving communication resources some N partner communication
complexity tasks. Our quantum solution is based on sequential transformations on
a single qubit. In contrast with recently proposed schemes involving maltiparticle
GHZ states.

Keywords. Quantum cryptography, communication complexity, quantum information

Introduction

Quantum information science breaks limitations of conventional information transfer,
cryptography and computation. Here we will consider two multiparty protocols, se-
cret sharing and communication complexity. The communication complexity problems
(CCPs) [1] were shown to have quantum protocols, which outperform any classical ones.
In a CCP separated parties performing local computations exchange information in order
to accomplish a globally defined task, which is impossible to solve singlehandedly. Two
types of CCPs can be distinguished: the first one minimizes the amount of information
exchange necessary to solve a task with certainty [2,3,4]. The second one maximizes
the probability of successfully solving a task with a restricted amount of communication
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[3,5,6]. Such studies aim, e.g., at a speed-up of a distributed computation by increasing
the communication efficiency, or at an optimization of VLSI circuits and data structures
[71.

In the secret sharing protocol (SSP), the secret is splitted in way that a single person
is not able to reconstruct it. Suppose for example that the launch sequence of a nuclear
missile is protected by a secret code. Yet, it should be ensured that a single lunatic alone
is not able to activate it, but at least two lunatics are required. Solutions for this problem,
and its generalization and variations, are studied in classical cryptography [8]. In such
problems the aim here is to split information, using some mathematical algorithms, and
to distribute the resulting pieces to two or more legitimate parties. However classical
communication is susceptible to eavesdropping attacks.

Quantum protocols for the CCPs [2,3,4,5,6] and the SSPs [9,10,11,12] involving
multiparty entangled states were shown to be superior to classical protocols. How-
ever,current methods of production of such states do not work for more than four parti-
cles, and suffer from high noise.

Here we propose a quantum protocol for the CCPs and SSPs for N parties, in which
a sequential single qubit communication between them is used with no need for GHZ-
states. As our protocol requires only single qubits it is realizable with the current state-
of-the-art technologies, they become technologically comparable to quantum key distri-
bution, so far the only commercial application of quantum information.

1. Single qubit secret sharing protocol

Here we present An N party SSP [13], where only the sequential communication of a
single qubit is used, runs as follows (see Figure 1). The qubit is initially prepared in the
state

1
V2

During the protocol the qubit is sequentially communicated from partner to partner, each
acting on it with the unitary phase operator U;(p;) = [0) — |0) and |1) — €*¥i|1)
with the randomly chosen value of ¢; € {0, 7, /2, 3w/2}. Therefore, having passed all
parties, the qubit will end up in the state

|+z) = —=(10) +]1)). ey

) = s (1o>+e“2?*"”11>). ®

The last party performs a measurement on the qubit in the basis [+2 ) = Z5(]0) £[1))
leading to the result £1. As it will be clarified later, for her/him it suffices to choose only

between ¢y = 0 or oy = 7/2. The expectation value of the measurement is

N
E(Solu--wSDN):COS Z‘?OJ . )
J

Note that this expectation value (Eqn. 3) has the same structure like the correlation func-
tion obtained using the GHZ state and can therefore also be used to obtain a shared se-
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recipients

qubit
qubit detection

source ‘ distributor

Figure 1. Scheme for N party single qubit secret sharing. A qubit is prepared in an initial state and sequentially

communicated from party to party, each acting on it with a phase operator ﬁ(tpj), applying a randomly chosen
phase ;. The last recipient performs a measurement on the qubit leading to the result £1. In half of the cases
the phases add up such that the measurement result is deterministic. These instances can be used to achieve the
aim of secret sharing.

cret. For this purpose each participant divides his action for every run into two classes:
a class X corresponding to the choice of ¢; € {0, 7} and a class Y corresponding to
@; € {m/2,3m/2}. Following this classification they broadcast the class of their action
for each run, but keep the particular value of ¢; secret. This corresponds in the GHZ
scheme to the announcement of ¢; while keeping k; secret. In our scheme the partners
announce their class choice in the reversed order with respect to the order of the qubit
transmission [14]. From that procedure they can determine which runs lead to a deter-
ministic measurement result, i.e. when cos(zgj ;) equals to either 1 or -1. Such sets
of ¢’s occur on average in half of the runs. These are valid runs of the protocel. In such
cases any subset of N — 1 parties is able to infer the choice of g of the remaining
partner, if themselves their values of ;. In case that this subset contains the last partner,
he/she must reveal the measurement result. Thus, the collaboration of all recipients is
necessary. The task of secret sharing is now achieved via local manipulation of phases
on a communicated single qubit, and no multiparticle entangled GHZ state is required
anymore.

In order to ensure the security of the protocol against eavesdropping or cheating the
partner Pp arbitrarily selects a certain subset (which depends on the degree of security
requirements) of valid runs. For these runs the value of ¢ g is compared with the one
inferred by the recipients. To this end each of the recipients sends the value of his/her
phase ;. The comparison reveals any eavesdropping or cheating strategy. The security
of the presented protocol against a general eavesdropping attack follows from the proven
security of the well known BB84 protocol {15,16]. Each communication step between
two successive parties can be regarded as a BB84 protocol using the bases = and y.
Any set of dishonest parties in our scheme can be viewed as an eavesdropper in BB84
protocol.

2. Single qubit quantum communication complexity problem

Let us introduce the CCP analyzed and implemented here, the so-called modulo-4 sum
problem [3,4,18]. Imagine IV separated partners Py,. .., Pxn. Each of them receives a
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two-bit input string Xy, (X5 =0,1,2,3;k=1,...,N). The Xjs are distributed such
that their sum is even, i.e. (Zszl X} )mod2 = 0. No partner has any information what-
soever on the values received by the others. Next, the partners communicate with the
goal that one of them, say P, can tell whether the sum modulo-4 of all inputs is equal 0
or 2. That is, Py should announce the value of a dichotomic, i.e. of values &1, function
T(X1,...,Xn)givenby T =1— (lecv:l Xmod4). The partners can freely choose the
communication protocol, e.g. they can choose between sequential communication from
one to the other, or any arbitrary tree-like structure ending at the last party Py . The total
amount of communication is restricted to only N — 1 bits (classical scenario).

For further convenience, one can introduce a different more handy notation, we put
X = (1 — yg) + zg, where y, € {—1,1}, z, € {0, 1}. For the task B we write X =
(1l — yx)/2 + zk, with yx, € {—1,1}, zx € [0, 7). Note that, the dichotomic variables
1/, are not restricted by the probability distributions, p, for the Xs. They are completely
random. The task function 7" can now be put as T = f(z1,...,ZnN) ngl Yk, Where
fral — {1,~1},and p(X1,...,Xn) =2"Vp'(21,...,2N).

Since T is proportional to the product of all yys, the answer ey = £1 of Py is
completely random with respect to T', if it does not depend on every y. Thus, an unbro-
ken communication structure is necessary: the information from all N — 1 partners must
directly or indirectly reach Py . Due to the restriction to N — 1 bits of communication

each of the partners, Py, where k = 1,..., N — 1, sends only a one-bit message, which
for convenience will be denoted as e, = 1.
For a correct answer Tey = 1, otherwise, T'ejy = —1, and the average success can

be quantified with fidelity F' = > .xyPlen,or equivalently

F:2LN Z p'(ml,...,a:N)f(iUl;‘--vl'N)

T1,y..,0n=0,1

X% Tl veen (@1, BN Y1, YUN) )
Yiyenyn==l

We have shown that the classical fidelity bound is by Bell-like inequality. This clas-
sical bound decrease exponentially with N. One has F, < 275+ where K = N/2 and
K = (N + 1)/2 for even and odd number of parties, respectively [17]. This analytic
result confirms the numerical simulations of [18] for small N,

For the quantum protocols, we note that the Holevo bound [19] limits the information
storage capacity of a qubit to no more than one bit. Thus, we must now restrict the
communication to N — 1 qubits, or alternatively, to IV — 1-fold exchange of a single qubit.
The solution of task starts with a qubit in the state |to) = 272/2(]0) + |1)). Parties
sequentially act on it with the phase-shift transformation [0)(0| + e X*/2|1)(1], in
accordance with their local data. After all N phase shifts one has

1

\/§<i0>+e“<2i~v=lxk>/211>>. ®)

YN ) =

. N
Since the sum over X} is even, the phase factor em(zkml X)/2 i equal to the di-
chotomic function 7' to be computed. Thus, a measurement of the qubit in the basis
(J0) £ ]1))/+/2 reveals the value of T' with fidelity Fy = 1, that is, always correctly
[171. '
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The classical fidelity F or the probability of success F, decreases exponentially with
growing NV to the value corresponding to a random guess by Pp. Le., communication
becomes useless. In contrast, P, does not change with IV and it equals 1. The simple,
one qubit assisted quantum protocol, without any shared multi-particle entanglement (1),
clearly outperforms the best classical protocols.

3. Experiment

We have experimentally implemented the two SSPs and CCPs. We encoded the protocol
qubit in a single photon. The basis states |0) and |1 ) were represented by the polariza-
tion states | H ) and | V') respectively (horizontal (H) and vertical (V) linear polariza-
tion). The single photons were provided by a heralded single photon source. The setup is
shown in A pair of polarization entangled photons is created via a spontaneous paramet-
ric down conversion (SPDC) process. As the photons of a pair are strongly correlated in
time the detection of one photon in Dr heralds the existence of the other one which is
used for the protocol. A coincidence detection between D and D /D_, within a chosen
time window of 4 ns, implies communication of only a single photon. The SPDC process
was run by pumping a 2 mm long S-barium borate (BBO) crystal with a blue single mode
laser diode (402.5 nm), at an optical output power of 10 mW. Type-II phase matching
was used, at the degenerate case leading to pairs of orthogonally polarized photons at a
wavelength of A = 805 nm (AX = 6 nm) (see Figure 2. In order to prepare the initial
polarization state a polarizer transmitting vertically polarized photons was put in front of
the trigger detector Dt ensuring that only (initially) horizontally polarized photons can
lead to a coincidence detection. This single qubit source will used to implement our two
multiparty protocols [13,17].

3.1. Experimental single qubit N = 6 secret sharing

The first partner was equipped with a motorized half-wave plate (HWP;) followed by
quarter-wave plate (QWP) at an angle of 45°. By rotation of HWP; to the angles
0°,45° and 22.5 °, —22.5 ° he could transform the horizontally polarized photons com-
ing from the source to |4y ) and | £z ). This corresponds to applying the phase-shifts

o "‘.. ,- ,

{ BBO j

uv crystal QWP; C1 C4 |
polanzer /
RNG
i HWPR,
distributor recipients R, ... Ry i

Figure 2. Setup for single qubit secret sharing. Pairs of orthogonally polarized photons are generated via a
type I SPDC process in a BBO crystal. The detection of one photon from the pair by D heralds the existence
of the other one used in the protocol. The initial polarization state is prepared by placing a polarizer in front
of the trigger detector. Each of the recipients (Ry . . . Rg) introduces one out of four phase shifts, according to
the output of a pseudo random number generator (RNG), using half- and quarter wave plate (HWP;, QWP)
or YVOy crystals (Cy...Cs), respectively. The last party analyzes additionally the final polarization state of the
photon by detecting it behind a half-wave plate (HWP2) and a polarizing beam splitter.
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v € {n/2,3n/2} and ¢ € {0, 7} respectively. As the phase-shifts of the other part-
ners had to be applied independently from the incoming polarization state the usage of
standard wave plates was not possible. Therefore the unitary phase operator was im-
plemented using birefringent uniaxial 200 pm thick Yttrium Vanadate (YVOy) crystals
(C;). The crystals were cut such that their optic axis lies parallel to the surface and is
aligned in such a way that H and V polarization states correspond to their normal modes.
Therefore by rotating the crystals along the optic axis for a certain angle a specific rela-
tive phase shift was applied independently from the incoming polarization state. An ad-
ditional YVOy crystal (Ccomp, 1000 pm thick) was used to compensate for dispersion
effects (see fig. 2. The last party performed the measurement behind a half-wave plate
(HWP5) at an angle of 22.5° followed by polarizing beam-splitter (PBS). The photons
were detected at D./D_ and Dt by passively quenched silicon avalanche photo diodes
(Si-APD) with an efficiency of about 35 % [13].

The protocol was repeated z;o1q; = 25000 times. One run consisted of choosing
pseudo-random variables, rotating the crystals accordingly and opening the detectors for
a collection time window 7 = 200 us, what took together about 1 s. The requirement
of communicating a single photon imposes that only those runs were included into the
protocol in which just one coincidence between D and either D or D_ (coincidence
gate time 7, &~ Tns) was detected during 7. In these runs a single coincidence detection
happened 24, = 2107 times which provided us with the raw key. From this we extracted
Zyar = 982 valid runs where ]cos(Zj.V @;)] = 1 (506 times cos(E;.V @;) = 1 and 476

times cos(Z;.V ¢;) = —1) with a quantum bit error rate (QBER) of 2.34 £ 0.48 [13].
3.2. Experimental single qubit N = 5 communication complexity

We implemented the quantum protocols for N = 5 parties, using a our heralded single
photon as the carrier of the qubit communicated sequentially by the partners. A half-
wave plate (HWP;) transforms the qubit to the initial state 27*/2(| H ) +|V')). The data
X}, of each party was encoded on the qubit via a phase shift, using birefringent materials.
The last party performed a measurement in the 2~/2(| H ) + | V')) basis to obtain the
answer ey [17].

For a fair comparison of the quantum protocols with the classical ones, no heralded
events are discarded, even if the detection of the protocol photon failed. In such a case

Figure 3. Color online) Set-up for qubit-assisted CCPs. Pairs of orthogonally polarized photons are emitted
from a BBO crystal via the type-II SPDC process. The detection of one trigger photon at D indicates the
existence of the protocol photon. The polarization state is prepared with a half-wave plate (HWP;) and a
polarizer, placed in the trigger arm. Each of the parties introduces a phase-shift by the rotation of a birefringent
YVOq crystal (C1 to Cs). The last party performs the analysis of a photon-polarization state using a half-wave
plate (HWP;) followed by a polarizing beam-splitter (PBS).
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one can still guess the value of T, but with success rate of only 1/2. Therefore high
detection efficiency of the heralded photons, i.e., high coincidence/single ratio for our
set-up, is essential for an unambiguous demonstration of the superiority of qubit-assisted
protocol [18].

The individual phase shifts of parties are also implemented by rotating 200 pm thick
Yttrium-Vanadate (YVQOy) birefringent crystals (C;) along their optic axis. To analyze
the polarization state of photons in the desired basis, a half wave-plate (HWP3) followed
by polarizing beam-splitter (PBS) is used (see Figure 3).

The protocols were run many times, to obtain sufficient statistics. Each run took
about one second. It consisted of generating a set of pseudorandom numbers obeying the
specific distribution, subsequent setting of the corresponding phase shifts, and opening
detectors for a collection time window 7. The limitation of communicating one qubit per
run requires that only these runs, in which exactly one trigger photon is detected during
T, are selected for the evaluation of the probability of success Pegp.

In order to determine the probability of success from the data acquired during the
runs we have to distinguish the following two cases. First, the heralded photon is de-
tected, which happens with probability 7, given by the coincidence/single ratio. Then,
the answer e can be based on the measurement result. However, due to experimental
imperfections in the preparation of the initial state, the setting of the desired phase shifts,
and the polarization analysis, the answer is correct only with a probability -, which
must be compared with the theoretical limits given by Fy. Second, with the probabil-
ity 1T — 7 the detection of the heralded photon fails. Forced to make a random guess,
the answer is correct in half of the cases. This leads to an overall success probability
Peyp =17+ (1 —1)0.5, or a fidelity of F, = 7(2y — 1).

Due to a finite measurement sample, our experimental results for the success proba-
bility are distributed around the value P, as shown in Figure 4. The width of the distri-
bution is interpreted as the error in the experimental success probability. For task A we
obtain a quantum success probability of P, = 0.711 £ 0.005.

The bound P, = 5/8 for the optimal classical protocol is violated by 17 standard
deviations. We have obtained for n = 6692 the values 7 = 0.452 £ 0.010 and v =
0.966 + 0.003.

1800 4
1600 1
1400 4
1200 -
1000 -
800 1
600
400 -
200 -
0 62 64 66 68 70 72
success probability [%

62.5 %

711+05%

classical bound

[PV}

Figure 4. Histograms of measured quantum success probabilities. The bounds for optimum classical protocols
are displayed as well.
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Summary

In summary, we introduced a new scheme for solving the multi-party secret sharing and
communication complexity protocols. Unlike other quantum schemes employing multi-
particle entangled states our protocols uses only the sequential communication of a sin-
gle qubit. As single qubit operations using linear optical elements and the analysis of
photon polarization states are quite well accomplishable with present day technology we
were therefore able to present the first experimental demonstration of the secret sharing
protocol for N = 6 parties. This is to our knowledge the highest-number of actively
performing parties in a quantum protocol ever implemented. we have experimentally
demonstrated the superiority of quantum communication over its classical counterpart
for distributed computational tasks by solving two examples of CCPs. In our experiment
we have reached higher-than-classical performance even when including all imperfec-
tions of state-of-the-art technologies. Thus, by successfully performing a fair and real
comparison with the best classical scenario, we clearly illustrate the potential of the im-
plemented scheme in real applications of multi-party quantum communication, In princi-
ple we see no experimental barrier to extend the performed protocol to even significantly
higher number of participants. Most importantly, our method gives a generic prescription
to simplify many multi-party quantum communication protocols.
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