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Zusammenfassung

Als zentrales Element der Quantenmechanik fordert Verschränkung nicht nur immer
wieder die Intuition von Physikern heraus, sondern bildet dabei auch die elementare
Ressource für verschiedene Schemata der Quantenkommunikation und des Quantenrech-
nens. Wichtiger Bestandteil vieler dieser Anwendungen ist die Vielteilchenverschänkung.
Daher wurde deren Beschreibung, Erzeugung und Manipulation ein sehr aktives Gebiet
der theoretischen und experimentellen Quanteninformationswissenschaften. Die Heraus-
forderung liegt hierbei im Verständnis und der Charakterisierung der verschiedenen
Typen von Vielteilchenverschränkung, dem Finden neuer Anwendungen sowie der ex-
perimentellen Kontrolle und Analyse von Quantenzuständen.

Die vorliegende Dissertation beschäftigt sich mit der experimentellen Beobachtung
und Analyse von zwei verschiedenen Typen polarisationsverschränkter Vier-Photonen-
Zustände: Denen des Cluster-Zustands und des symmetrischen Dicke-Zustands mit zwei
Anregungen. Die zu diesem Zweck entwickelten Versuchsaufbauten basieren auf einer
Kombination aus spontaner parametrischer Fluoreszenz und linearer Optik sowie beding-
ter Detektion. Der Cluster-Zustand kann damit mit einer Fidelity von 74.1% und der
symmetrische Dicke-Zustand mit einer Fidelity von 84.4% nachgewiesen werden. Im Rah-
men des Clusterzustandexperiments wurde ferner ein Instrument entwickelt, das von all-
gemeinem Interesse für Anwendungen ist, die auf linear-optischer Quantenlogik beruhen:
Ein probabilistisches kontrolliertes Phasengatter das durch die Verbesserung einer be-
reits früher realisierten Version sehr stabil und daher besonders gut für die Verwen-
dung in Mehrphotonenexperimenten geeignet ist. Um die Qualität des Gatters zu unter-
suchen, wurde dessen Fähigkeit Verschränkung zu erzeugen eingehend untersucht sowie
eine Prozesstomographie durchgeführt. Die erzielten Resultate stellen eine erfolgreiche
Anwendung des Gatters in verschiedenen Quanteninformationsprotokollen in Aussicht.

Zur genaueren Untersuchung der beobachteten Zustände, werden effiziente Analyse-
methoden vorgestellt. Diese ermöglichen den Nachweis verschiedener grundlegender
Eigenschaften der idealen Zustände im Experiment; unter anderem echte Vierteilchenver-
schränkung. Ein besonderer Schwerpunkt liegt auf der Untersuchung des Verhaltens der
Zustände bei projektiven Messungen und dem Verlust einzelner Photonen. Dabei werden
neue Einsichten in die Verschränkungsstruktur der Zustände gewonnen und experimentell
bestätigt. Des Weiteren werden Eigenschaften, die für die Verschränkungsklasse der
Zustände charakteristisch sind, aufgezeigt. Die gewonnen Erkenntnisse können benutzt
werden um die Verwendtbarkeit der Zustände für bestimmte Quantenkommunikationsan-
wendungen abzuleiten.

Die gezeigten Experimente sind generisch für den Entwurf experimenteller Auf-
bauten zur Beobachtung von Cluster- und symmetrischen Dicke-Zuständen mit höherer
Photonenzahl. Selbiges gilt auch für die verwendeten effizienten nicht-tomographischen
Methoden zur Zustandsanalyse, wobei die damit verbundene Reduzierung des experi-
mentellen Aufwands besonders bei hohen Photonenzahlen eine entscheidende Rolle spielt.
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Summary

Entanglement lies at the heart of quantum mechanics and challenged the intuition of
physicists ever since it was discovered. At the same time, it is a powerful tool that serves
as a key resource for quantum communication and quantum computation schemes. Many
of these applications rely on multiparticle entanglement, whose description, generation
and manipulation became therefore a very active field in theoretical and experimental
quantum information science. The goals are here to classify and understand the different
types of entanglement, to find new applications and to control and analyze the quantum
states experimentally.

In this thesis, the experimental observation and analysis of two different types of four-
photon polarization entangled states is presented: The cluster state and the symmetric
Dicke state with two excitations. For this purpose, experimental setups based on spon-
taneous parametric down conversion and linear optics with conditional detection were
designed. They allowed to observe the cluster state with a fidelity of 74.1% and the sym-
metric Dicke state with a fidelity of 84.4%. The cluster state experiment included the
development of a new instrument that is of interest for linear optics quantum logic in
general: A probabilistic controlled phase gate that is, due to the simplification of a pre-
vious approach, highly stable and can actually be used in multiphoton experiments. The
quality of the gate is evaluated by analyzing its entangling capability and by performing
full process tomography. The achieved results demonstrate that this device is well suited
for implementation in various multiphoton quantum information protocols.

In order to study the observed quantum states, efficient analysis tools are introduced.
It was possible to verify that essential properties of the ideal states are indeed reproduced
in the experiment, among others, the presence of genuine four-partite entanglement. A
particular focus is put on the behavior of the states under projective measurements and
photon loss. Several new insights in their entanglement structure are revealed and verified
experimentally. We further demonstrate properties that are characteristic for the entan-
glement classes of the states. These can be used to infer the applicability of the observed
states for certain distributed quantum communication applications.

The presented experiments are generic for the design of setups to observe cluster- and
symmetric Dicke states with a higher number of photons. Furthermore, also the efficient
non-tomographic methods for state analysis we employ can directly be generalized to
experiments with higher qubit numbers, where the reduction of the experimental effort
for state analysis is even more crucial.
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1 Introduction

With the beginning of the last century, a new era in physics started. Plancks derivation
of the radiation law based on the quantum hypothesis constitutes the birth of quantum
theory. Without any doubt, the following years have been one of the most exciting periods
in the history of science. Scientists were impelled to invent new concepts that eluded man’s
intuition. Naturally, there was no consensus about the interpretation of the new theory.
This also lead to the historical debate between the distinguished physicists Albert Einstein
and Niels Bohr [1].

One of the late objections Einstein raised together with Boris Podolski and Nathan
Rosen is presented in the famous EPR-paper, published in 1935 [2]. They pointed at
another puzzling element that is intrinsic to quantum theory and that was baptized ”Ver-
schränkung” (entanglement) by Erwin Schrödinger [3]. EPR argued that the counterintu-
itive features of entangled systems cause effects that demonstrate the incompleteness of
quantum mechanics. In the following years, even though most physicists believed in the
new theory, the doubts EPR had raised were not refuted in a satisfying way. Many years
later, in 1964, John Bell resurrected the discussion about entanglement by showing that
the intuitive assumptions made by EPR indeed lead to experimentally testable predictions
that are not consistent with the predictions of quantum mechanics [4]. Since then, several
tests of these so-called Bell inequalities have been performed: Already in the early ones,
Bell inequalities were violated [5–7] in favor of quantum mechanics. However, certain
loopholes that could ”save” the classical description of the world were still open and have
partly been closed later on [8, 9]. Yet, a really conclusive experiment is still missing.

In addition to these fundamental considerations, a new insight inspirited the study of
entanglement: Quantum mechanics enables new applications that are not, or less effi-
ciently, achievable with classical mechanics and in most of the cases entanglement is an
indispensable ingredient. Examples are quantum communication tasks like dense coding
[10], (entanglement based) quantum cryptography [11] and quantum teleportation [12].
Further, it was shown that at least certain computational tasks can be solved more ef-
ficiently by quantum computers [13–16]. All these developments that raise the hope for
secure communication networks and a new generation of supercomputers are part of the
fastly growing field of quantum information. Entanglement lies at the heart of this young
discipline.

Today, a considerable effort is put into the research on entanglement with no restric-
tion to, but a strong emphasis on, two-level systems, i.e. qubits. Bipartite entanglement
is well understood and has been prepared in many different physical systems. Naturally,
the ambitious goals mentioned before also require entanglement between many parties. It
was, however, understood that multipartite entangled systems have qualitatively different
properties in comparison to bipartite ones: There exist different types of entanglement.
Thus, it is necessary to classify entangled states, to understand their properties and to
learn which states are interesting for which applications. The development of the ex-
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1 Introduction

perimental instruments to implement the different types of entanglement is required in
addition to the complication to create and control entanglement between many particles at
all. Finally, the analysis of such states requires methods for the detection and distinction
of different quantum states. It is desirable that such methods are efficient, i.e. rely only
on a relevant instead of a complete set of measurement data, because the experimental
effort to determine the latter grows exponentially with the number of particles.

The first experiments on multipartite entanglement, conducted in the end of the 1990’s,
used entanglement in the polarization degree of freedom of photons. Important steps
were the observation of a three-photon GHZ state [17], its violation of a new and more
restrictive version of Bells inequality [18] and the first quantum teleportation [19]. Since
then, entanglement of up to six photons was observed [20]. Entangled states were prepared
in a variety of other physical systems, e.g. most notably, up to eight ions were entangled
[21, 22]. Further, another type of multipartite states, i.e. W states, moved into the center
of interest and were prepared experimentally. GHZ- and W states are the only two types
of entanglement between three qubits [23]. The situation changes, however, drastically
when we look at entanglement of even more particles: New types of entanglement appear
[24–26].

This thesis describes the experimental implementation and characterization of two dif-
ferent types of four-photon entangled states, i.e. the cluster state and the symmetric Dicke
state with two excitations. They belong, together with the GHZ- and the W states, to
the families of graph and symmetric Dicke states, respectively:

Graph states are generated by next-neighbor interactions and occur naturally in solid
state systems. They can be easily obtained in experiments on atomic lattices [27]. They
are basic elements of various quantum error correcting codes [28] and multiparty quantum
communication protocols [29–32]. A particular subfamily is formed by the cluster states,
which moved into the center of interest in the context of the so-called one-way quantum
computer scheme suggested by Briegel and Raussendorf [33, 34]. There, the cluster states
serve as the initial resource of a universal computation scheme based on single-qubit
operations only. Proof of principle experiments of such applications have very recently
been demonstrated [35–38]. For four qubits, the GHZ and the cluster state form the only
two inequivalent types of graph states.

Entangled symmetric Dicke states exhibit a very different type of entanglement that is
closely related to their symmetry under permutation of particles. They are eigenstates of
the spin operator in z direction with maximal total spin. R.H. Dicke identified them as the
eigenstates of ”super-radiant” gases where enhanced radiation caused by coherence occurs
[39]. From the quantum information point of view, they are important because they
exhibit a strong persistency against particle loss, showing that ”significantly entangled
states need not be fragile” [40]. For four qubits there are two entangled inequivalent
representatives of symmetric Dicke states: The W state and the symmetric Dicke state
with two excitations.

To experimentally implement the states, we rely on the techniques of spontaneous para-
metric down conversion for photon generation and linear optics setups and conditional
detection for further processing. Linear optics solutions for the observation of the sym-
metric Dicke state with two excitations and the cluster state are developed, were the latter
relies on a new component of high significance for photonic quantum logic in general: As
the core of the cluster state setup, we designed, based on a simplification of a recent
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approach [41–44], a linear optics controlled phase gate that is stable enough to allow the
first application of a universal quantum gate in a multiphoton application. The gate is
characterized by performing full process tomography, further by matching an accurate
model of the gate to the obtained process matrix and by the analysis of its entangling
capability.

The investigation of the observed quantum states has a two-fold goal: We want, on the
one hand, to demonstrate the observation of the desired entanglement, on the other hand,
to characterize the states, i.e. to investigate their properties. It is common to calculate the
fidelity between the observed and the ideal quantum state to quantify their distance and
thus to gain information about the experimentally achieved quality. In general, however,
the fidelity does not tell whether the observed state exhibits the same, or a completely
different type of entanglement. To date, there is no general strict method to discriminate
different kinds of four-partite entangled mixed states from each other. We approach this
task by a systematic study of the desired states’ properties and by testing whether and to
which degree the observed states exhibit these properties. The characteristics we study
can be related to the entanglement class and families of the desired states. We put a focus
on the investigation of entanglement persistency and connectedness, i.e. the entanglement
in the states after projective measurements or loss of qubits. Particularly here, we gain
further insights in the entanglement structure of the states. In addition, we find methods
to discriminate different types of entanglement and ways to deduce the applicability of
the states for certain quantum communication protocols.

The analysis of the experimentally observed states with respect to these properties usu-
ally requires only a very restricted, relevant, part of information about a state. Thus, it is
in general not necessary to determine its complete density matrix. Instead, we rely largely
on efficient, non-tomographic tools, i.e. tools that allow to derive the states’ properties
without the use of a complete set of data. To this end, we make extensive use of entangle-
ment witnesses, which allows a partial classification of the observed states. We develop a
strategy to study the permutation symmetry with a restricted set of measurements. The
application of state tomography on subsets of particles allows, amongst others, to use
the broad spectrum of tools that exist for the description of bipartite entangled states.
For the cluster state, the efficient analysis is particularly simple due to its special entan-
glement structure. In case of the Dicke state we achieved a sufficiently high count rate
and stability that we could indeed perform a full tomography of the state and apply our
analysis tools to the complete set of data.

The thesis is structured as follows: Chapters two and three introduce theoretical con-
cepts of two- and multiqubit entanglement. Then, in chapter four, we present the experi-
mental methods and the evaluation strategies used in the experiments that are presented
in chapters five, six and seven.
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2 Entanglement of Qubits

The main goal in this thesis is the experimental implementation of polarization entangled
four-photon states and their analysis with respect to strength, type and applicability of
entanglement. Polarized photons are merely one possibility for the physical implemen-
tation of qubits, along with the spin-1

2 particles or two-level systems. Therefore, the
following chapter concerns the description of single- and multiqubit states. Entanglement
arises naturally from the superposition principle when states of more than one qubit are
considered. Implications of entanglement are discussed on the example of some bipartite
states, multiqubit entanglement is mainly considered in chapter 3. Several quantum op-
erations that can be used to change the entanglement of states are introduced. Further,
a prominent example for the application of entanglement in quantum communication is
shown. Finally, theoretical tools for the detection and quantification of entanglement are
presented.

2.1 Description of qubit states

In this section, the necessary notations and tools for the description of single- and multi-
qubit states are introduced. It is just a short overview and more detailed discussions on
this subject can be found in standard literature like [45, 46]. First, the Hilbert space of
a single qubit along with related measurements and quantum operations is introduced.
Then, these concepts are generalized to multipartite quantum states and to statistical
mixtures of quantum states.

2.1.1 The quantum bit

The notion of ”qubit” (quantum bit) was introduced in a publication by Schumacher [47]
in 1995. It expresses the fact that a qubit is the quantum mechanical counterpart of the
classical bit. The physical implementation is in either case based on a system with two
distinct states. In contrast to the classical case, however, quantum states are basis vectors
in a Hilbert space. Any normalized linear combination of two states is, according to the
superposition principle, another valid quantum state.

In this thesis, qubits are implemented as polarization states of photons. They can be
expressed in terms of the two states |H 〉 and |V 〉 representing horizontal and vertical
polarization, respectively. These states form the so-called Z-basis and are the common
choice for the representation of vectors and matrices, i.e. the computational basis. The
most general single qubit state is then given by (in different notations):

|ψθ,φ 〉 = cos(θ/2) |H 〉+ sin(θ/2)eiφ |V 〉=̂
(

cos(θ/2)
sin(θ/2)eiφ

)
, (2.1)
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2 Entanglement of Qubits

Figure 2.1: The surface of the Bloch sphere represents the Hilbert space of one qubit.
The grid lines on the surface correspond to constant φ and θ of |ψθ,φ 〉 in equation 2.1,
respectively. The state is thus found via θ-rotation around the Y-axis and a φ-rotation
around the Z-axis as indicated by the arrows. The eigenstates of the Pauli matrices (σ̂x,
σ̂y, σ̂z) lie on the corresponding three orthogonal axis (X, Y, Z).

where θ ∈ [0, π] and φ ∈ [0, 2π[. The Hilbert space of one qubit can conveniently be
represented graphically by the Bloch sphere, figure 2.1. The state |ψθ,φ 〉 is a vector
corresponding to a point on the surface of the Bloch sphere figure 2.1. It is found by a
rotation of the vector |H 〉 with angle θ around the Y axis followed by a φ-rotation around
the Z axis.

Measurements on quantum states are represented by observables, i.e. hermitian oper-
ators Ô. Thereby, a quantum state |ψ 〉 is projected onto one of the eigenstates of the
operator and the measurement outcome is the corresponding eigenvalue. The expectation
value obtained for a measurement on a certain state |ψ 〉 is calculated as 〈ψ | Ô |ψ 〉.

Measurements on qubits have two possible measurement outcomes, +1 and −1, result-
ing in a projection of |ψ 〉 onto a basis of two orthogonal states |ψθ,φ 〉 and |ψθ+π,−φ 〉,
respectively. The corresponding observable is:

σ̂θ,φ = cos(θ)σ̂z + cos(φ) sin(θ)σ̂x + sin(φ) sin(θ)σ̂y. (2.2)

where σ̂z, σ̂x and σ̂y are the Pauli spin matrices:

σ̂z =
(

1 0
0 −1

)
σ̂x =

(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
. (2.3)

The eigenstates of the Pauli matrices lie on the Z-, X- and Y- axes in the Bloch sphere
figure 2.1. They are defined as:

σ̂z |H/V 〉 = ± |H/V 〉 , (2.4)
σ̂x |+/−〉 = σ̂x

1√
2
( |H 〉 ± |V 〉) = ± |+/−〉 , (2.5)

σ̂y |R/L 〉 = σ̂y
1√
2
( |H 〉 ± i |V 〉) = ± |R/L 〉 , (2.6)
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2.1 Description of qubit states

where |+/−〉 correspond to ±45 ◦ linear and |R/L 〉 to right and left circular polariza-
tions.

When a measurement of the observable σθ,φ is performed on a state |ψ 〉, we can calcu-
late the probability of occurrence for each measurement result with the expectation value
of the corresponding projector P±

θ,φ: 〈ψ |P±
θ,φ |ψ 〉. Here, the superscript + or − denotes

the measurement outcomes +1 or −1, respectively. The projector is given by:

P±
θ,φ =|ψθ,φ 〉〈ψθ,φ |= 1

2
(11± σθ,φ). (2.7)

Unitary transformations in the Hilbert space of one qubit correspond to rotations of all
states on the Bloch sphere around some angle ω. Each axis corresponds to a Pauli matrix
σ̂θ,φ. This can be easily seen by the fact that the eigenstates of σ̂θ,φ are left unchanged
by a rotation around the corresponding axis. A general unitary transformation is then:

Uω
θ,φ = i cos(ω/2)11 + sin(ω/2)σ̂θ,φ. (2.8)

In the language of quantum information, these transformations are single qubit quantum
gates. A very important example is the Hadamard gate H:

H = σ̂π/4,0 = Uπ
π/4,0 =

1√
2

(
1 1
1 −1

)
. (2.9)

2.1.2 Multiqubit states

Let us now consider quantum states of N qubits. We assume that they can be numbered,
in other words, another degree of freedom in the physical implementation of the qubits
allows to distinguish them1. The Hilbert space of the multiqubit system is then described
by the tensor product of the single qubit systems. This means that a basis for the new
Hilbert space can be obtained by tensorial multiplication of the single qubit basis vectors:

|HH...H 〉 = |H 〉1 ⊗ |H 〉2 ⊗ ...⊗ |H 〉N (2.10)
|HV...H 〉 = |H 〉1 ⊗ |V 〉2 ⊗ ...⊗ |H 〉N

...

|V V...V 〉 = |V 〉1 ⊗ |V 〉2 ⊗ ...⊗ |V 〉N .

Accordingly, the new state space has 2N dimensions. States that can be expressed as
tensor product of single qubit states are called separable. Naturally, any superposition
thereof is another valid state of the quantum system and is called non-separable if it
cannot be expressed in terms of a tensor product of single qubit states.

In analogy, the tensorial products of Pauli spin matrices form a basis for the observables
of a multipartite quantum system. Thus, each observable can be expressed as a linear
combination of the form:

Ô =
∑

∀k,ik=0

Γi1,i2,...,iN σ̂i1 ⊗ σ̂i2 ⊗ ...⊗ σ̂iN , (2.11)

1In this work the indices usually denote the spatial mode of the observed photons.
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2 Entanglement of Qubits

where σ̂0 = 11, σ̂1 = σ̂z, σ̂2 = σ̂x, σ̂3 = σ̂y and Γi1,i2,...,iN are complex coefficients. Observ-
ables that can be expressed in terms of a tensor product of single qubit observables are
called local. Note that local observables do not necessarily need to be products of the
Pauli matrices. In the experiments that are presented here, each photon is analyzed inde-
pendently, i.e., the measurement outcomes are expectation values of local observables and
are called correlations in the following. The reason is that their expectation values express
dependencies in the measurement outcomes of each qubit, as can be seen in the following
example. Consider the expectation value of σ̂z ⊗ σ̂z with the state 1√

2
( |HH 〉+ |V V 〉):

KZZ =
1
2
(〈HH | + 〈V V | )σ̂z ⊗ σ̂z

( |HH 〉+ |V V 〉)

=
1
2
(〈HH | σ̂z ⊗ σ̂z |HH 〉+ 〈HH | σ̂z ⊗ σ̂z |V V 〉+

〈V V | σ̂z ⊗ σ̂z |HH 〉+ 〈V V | σ̂z ⊗ σ̂z |V V 〉)

=
1
2
(〈HH |HH〉+ (−1) · (−1)〈V V |V V 〉) = 1 (2.12)

The expectation value 1 expresses the fact that the measurement results of both qubits
in this basis are always equal, i.e. correlated in the ZZ-basis. Accordingly, uncorrelated
states result in K = 0, anticorrelated ones in K = −1.

Any unitary transformation can, analogous to what was discussed for observables, be
expressed by a linear combination of tensor products of unitary operations acting on single
qubit systems. Transformations that can be expressed as Uω

θ,φ ⊗ Uω
θ,φ ⊗ ...Uω

θ,φ are called
local unitary transformation (LU).

2.1.3 Mixed states

The quantum states that have been used so far were pure states, described by their state
vector. Often, however, we can only make statistical statements about the state vector
of a quantum system. For example, when an experimental source of quantum states is
subject to uncontrollable changes, or when we study a subsystem of a larger quantum
state. The resulting states are described by statistical mixtures of pure quantum states
|ψi 〉, each one occurring with a certain probability pi, respectively. A convenient way to
treat these mixed states mathematically is the density operator formalism.

The density operator of a pure quantum state |ψi 〉 is simply given by its projector:

ρi =|ψi 〉〈ψi | (2.13)

Then the statistical mixture of several states, each occurring with the probability pi is the
convex linear combination:

ρ =
∑

i

pi |φi 〉〈φi | , with
∑

i

pi = 1 (2.14)

It is important to note that this decomposition into pure states is not unique. The den-
sity operator ρ, however, exclusively describes one mixed state and contains our complete
knowledge. From equation 2.14 one can directly deduce some properties of density ma-
trices [45]:
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2.1 Description of qubit states

� ρ is normalized: Tr(ρ) = 1.

� ρ is positive semi definite (has real positive eigenvalues).

� Tr(ρ2) ≤ 1, where the equality is fulfilled only for pure states ρ =|φ 〉〈φ |.
By fixing a certain orthonormal basis for the representation the density operator ρ can

be expressed as a matrix:
ρmn = 〈m | ρ |n 〉, (2.15)

where m,n ∈ {1, 2, ..., N} with |n 〉 and |m 〉 as basis vectors. Usually one uses the
computational basis (equation 2.10) with |1 〉 = |HH..HH 〉, |2 〉 = |HH..HV 〉,...,
|N 〉 = |V V..V 〉.

As the determination of density matrices for experimentally observed states constitutes
a major tool in this work, their interpretation will shortly be explained by comparing two
single qubit examples. The equally weighted mixture of all basis vectors is the white noise
state. For one qubit it is: ρwn = 1/2(|H 〉〈H | + | V 〉〈V |). The other example is the
superposition of the two basis vectors ρ+ =|+ 〉〈+ |. The corresponding matrices are:

ρwn =
1
2

(
1 0
0 1

)
, ρ+ =

1
2

(
1 1
1 1

)
. (2.16)

The diagonal elements are called populations because they express the probabilities to
observe the different basis states. Thus, they are always positive real values. In contrast,
the off-diagonal elements are complex numbers. They are called coherences as they ex-
press the interference effects between the populated states that can appear when they are
superimposed, i.e. they indicate coherence between the corresponding terms.

The expectation value of an operator Ô with a certain mixed state ρ is, in the density
matrix formalism, given by the trace of their product:

〈Ô〉ρ = Tr
[
Ôρ

]
(2.17)

The probability to detect a mixed state ρ in a certain pure state |ψ 〉 is calculated the
same way using Ô =|ψ 〉〈ψ |.

An important tool for the characterization of quantum states is the fidelity. Uhlmann
[48] presented this measure of the distance between two mixed states ρ and σ in 1976. It
is given by:

F σ
ρ =

(
Tr

[√√
σρ
√

σ

])2

(2.18)

The name fidelity reflects the common application of this measure to quantify how well a
certain imperfect version ρ of a quantum state resembles the perfect one σ.

In case one of the two states is pure, e.g. σ =|ψ 〉〈ψ |, equation 2.18 can be simplified
to:

Fψ
ρ = Tr [ρ |ψ 〉〈ψ |] = 〈ψ | ρ |ψ 〉, (2.19)

where the property of pure states |ψ 〉〈ψ |2=|ψ 〉〈ψ | was used. In other words, the fidelity
is then simply the probability to project the state ρ onto the state |ψ 〉.
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2 Entanglement of Qubits

2.2 Bipartite entanglement

Non-separable pure states, i.e. states that cannot be expressed in terms of a tensor prod-
uct of single qubit states, are called entangled. In this section, properties of maximally
entangled bipartite states will be introduced. The notion of separability and entanglement
is generalized to mixed states. Further, quantum gates that allow the manipulation of
entanglement will be presented followed by a prominent application of entanglement as
resource for quantum communication.

2.2.1 Bell states

The Hilbert space of two qubits is spanned by four orthonormal basis vectors. One
possible basis is the computational basis as presented in equation 2.10. Alternatively, one
can define a basis of non-separable states, the Bell-basis:

|ψ− 〉 =
1√
2
( |HV 〉 − |V H 〉),

|ψ+ 〉 =
1√
2
( |HV 〉+ |V H 〉),

|φ− 〉 =
1√
2
( |HH 〉 − |V V 〉),

|φ+ 〉 =
1√
2
( |HH 〉+ |V V 〉). (2.20)

These states are maximally entangled. The exact meaning of this will be subject of
section 2.3. Here, some properties of these states will be discussed. As mentioned, none
of these Bell states can be expressed as a tensor product of single qubit states. Several
interesting properties follow from this seemingly harmless fact.

Firstly, each Bell state can be transformed into every other Bell state via a unitary
transformation on one of the two qubits. It is easy to see that:

|ψ− 〉 = (11⊗ σ̂z) |ψ+ 〉 = (11⊗ σ̂x) |φ− 〉 = (11⊗ σ̂y) |φ+ 〉, (2.21)

where global phase factors were neglected. This observation expresses the fact that the
operation on a single qubit of entangled states influences the complete bipartite state.
This is not the case for separable states.

Secondly, measurements on a single qubit of a Bell state yield random results. In order
to determine the state of a single qubit subsystem we need to calculate the partial trace
over the other. This is exemplarily performed for the state |ψ− 〉:

TrA

[ |ψ− 〉AB〈ψ− |
]

=
∑

i={H,V }
A〈i |ψ− 〉AB〈ψ− | i〉A =

1
2
( |H 〉B〈H |+ |V 〉B〈V | ) =

1
2

11B,

(2.22)
here the indices A and B were used in order to indicate the numbering of qubits implied
by usage of the tensor product. The calculation shows that the state of qubit B is equal
to the white noise state when information about qubit A is not available. The same is, of
course, true when the other qubit is traced out.

10



2.2 Bipartite entanglement

Thirdly, the Bell states are perfectly (anti-) correlated in more than one measurement
basis. Let us compare the separable state |HV 〉 and the Bell state |ψ− 〉 expressed in
the Z- and the X-basis:

1√
2
( |HV 〉 − |V H 〉) =

1√
2
( |+−〉 − |−+ 〉), (2.23)

|HV 〉 =
1
2
( |++ 〉+ |+−〉+ |−+ 〉 − |−− 〉). (2.24)

For the entangled state, anticorrelation is observed in the Z- and X-basis. In contrast, the
separable state is correlated only in one basis. As we have seen in the previous section this
can also be determined from the expectation value of the operators σ̂z ⊗ σ̂z and σ̂x ⊗ σ̂x:

〈HV | σ̂z ⊗ σ̂z |HV 〉 = −1 , 〈ψ− | σ̂z ⊗ σ̂z |ψ− 〉 = −1, (2.25)
〈HV | σ̂x ⊗ σ̂x |HV 〉 = 0 , 〈ψ− | σ̂x ⊗ σ̂x |ψ− 〉 = −1 (2.26)

In general, each single qubit of a pure separable state is itself in a pure state, thus perfect
correlations are only observed in one pair of measurement bases as the measurement
outcomes in other bases are for each qubit random and independent. In contrast, as we
have seen before, the single qubits of entangled states are statistically mixed, but the
measurement outcomes are correlated in many measurement bases. Thus, knowing the
measurement outcome for one qubit allows prediction of the state of the other one.

All of these properties clearly demonstrate that the two qubits in a bipartite entangled
state are strongly linked and cannot be described separately. This property of entangled
states lies at the heart of quantum mechanics. It led to the formulation of the EPR-
Paradox [2] and the related Bell Inequalities ([4, 49]), which are not further considered
here. This thesis, however, focuses on the experimental investigation of the multitude of
entanglement properties of multipartite states as discussed in chapter 3.

2.2.2 Mixed entangled states

When mixed states are considered, it is not as clear as in the pure state case how to
distinguish between separable and entangled states. The decomposition of a mixed state
into pure states is not unique. Thus, the occurrence of a pure entangled state in a decom-
position is no guarantee for the presence of entanglement. Therefore, Werner presented
in 1989 the following definition of separable mixed states [10]:
A state is called separable if and only if it can be approximated by density matrices of
the form:

ρ =
∑

i

pi(ρ1 ⊗ ρ2), ∀i : pi ≥ 0,
∑

i

pi = 1 (2.27)

otherwise the state is called entangled. This seemingly simple definition is hard to test
for an arbitrary state. There is no analytical solution to decide this so-called separability
problem in general2. Partial solutions that even allow application in experiments will
be presented in section 2.3. First, however, some more details on the manipulation and
application of entanglement will be discussed.

2That means, for many particles and/or higher dimensional systems.
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2.2.3 Two-qubit operations

So far, only the existence of entangled states was discussed, not how they can be obtained.
From the quantum information point of view, one is studying quantum logic operations
(gates) that are capable to create and destroy entanglement regardless of the physical
implementation. A major interest concerns universal sets of quantum gates, which means
that every quantum operation can be implemented by concatenation of these elementary
gates in a quantum logic network3. A universal set cannot consist of local operations (LO)
only:

(LO1 ⊗ LO2...)( |ψ1 〉 ⊗ |ψ2 〉...) = [(LO1 |ψ1 〉)⊗ (LO2 |ψ2 〉)...] . (2.28)

It was shown [50], however, that local and certain two-qubit operations are indeed suffi-
cient to build universal networks and to implement arbitrary operations. In the following
we will present three two-qubit operations. One of them, the swap operation, will then
be generalized to the multiqubit case.

The controlled-phase gate CP is (together with single qubit operations) universal. It
is further a key-element in the initialization procedure of the one-way quantum com-
puter scheme [33]. The transformation is explicitly written for the computational basis in
table 2.1 a) - the corresponding two-qubit matrix is:

CP =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 (2.29)

The negative sign in the last contribution corresponds to a π-phase shift on the |V V 〉
term. Whether it applies depends on both qubits, therefore the gate cannot be realized
by single qubit operations only. This becomes also visible when rewriting this operation
as:

CP =
1
2
(11⊗ 11 + 11⊗ σ̂z + σ̂z ⊗ 11− σ̂z ⊗ σ̂z). (2.30)

In chapter 5 an experimental realization of such a gate with linear optics is demonstrated.
The controlled-NOT gate CNOT introduces the transformation shown in table 2.1 b).

The two qubit input consists of a control and a target qubit. The term |V 〉 in the control
qubit triggers a spin flip of the target qubit, otherwise the state is not changed. It is
represented by the matrix:

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 =

1
2
(11⊗ 11 + 11⊗ σ̂x + σ̂z ⊗ 11− σ̂z ⊗ σ̂x). (2.31)

A comparison with equation 2.30 shows that a simple Hadamard transformation (equa-
tion 2.9) turns one qubit entering a CP gate into a target qubit of the CNOT gate:
CP = (11⊗H) CNOT (11⊗H).

3There are also other approaches, like the one-way quantum computer. Theoretically, however, the
corresponding formalism is still useful for the analysis of these schemes [33].
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2.2 Bipartite entanglement

Table 2.1: Operations of the a) controlled-phase gate CP , b) the controlled-NOT gate
CNOT and c) the permutation operator S acting on the computational basis.

The swap operator S (e.g. [46, 51]) simply exchanges two qubits with each other. Re-
member (equation 2.10) that the tensor product used here implies a labeling of the qubits.
By swapping the qubits, their indices are exchanged: S21( |α 〉1⊗ |β 〉2) = ( |β 〉1⊗ |α 〉2),
were the index of the swap operator expresses the ordering after the operation. As one
would expect, a simple relabeling cannot change the entanglement in the state. It is, how-
ever, relevant as a tool to efficiently analyze the symmetry of an experimentally observed
state as will be demonstrate in section 3.3. The action of the gate in the computational
basis is summarized in table 2.1 c) and the corresponding matrix is:

S21 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 =

1
2
(11⊗ 11 + σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y + σ̂z ⊗ σ̂z). (2.32)

The swap gate, unlike the previously presented gates, can neither create nor destroy en-
tanglement. One can, however, easily modify it such that the new operation symmetrizes
quantum states:

Z =
11⊗2 + S

2
=




1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1


 . (2.33)

This has the form of a projector (compare with equation 2.7) and is indeed the projection
into the symmetric subspace [45]. As we will see in the following, this is in most cases a
projection onto an entangled state with state dependent success probability. Exemplarily,
this shall be demonstrated for the antisymmetric and a non-symmetric separable state:

Z |ψ− 〉 = 1
2( |ψ− 〉 − |ψ− 〉) = 0, (2.34)

Z |HV 〉 = 1
2 |HV 〉+ |V H 〉 =

1√
2
|ψ+ 〉. (2.35)

As expected, the antisymmetric state is projected with zero probability onto the symmetric
subspace. The separable state is projected with a probability of 1/2 onto the maximally
entangled state |ψ+ 〉. Thus, entanglement is obtained probabilistically, but for almost all
separable states (the only exceptions are tensor products of identical single qubit states
|ψθ,φ 〉⊗ |ψθ,φ 〉). In contrast, the unitary operations like the CP or CNOT only introduce
entanglement for few states, but with certainty.
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As a last step, let us generalize the swap operator to many qubits. Actually it is
generalized to many operations which correspond to different permutations of the indices.
It is known from group theory [46] that any permutation operation can be expressed by
concatenated application of several swap operations (which defines the product in the
permutation group). One can, for example, show that all of the 24 permutations of four
qubits can simply be built from three swap operations between qubits (1,2), (2,3) and
(3,4): S2134, S1324 and S1243. For example, the cyclic permutation of qubits 1,2 and 3
clockwise S3124 is given by:

S3124 = S1324 S3214 = (11⊗ S32 ⊗ 11)(S21 ⊗ 11⊗ 11). (2.36)

The projection operator of these permutation operations is defined exactly as for the
simple swap operator in equation 2.33. Without going into further detail, let me note
that one can also obtain entanglement between more than two qubits with this kind of
projectors by projection into higher dimensional symmetric subspaces [45].

2.2.4 Quantum teleportation

Entangled states exhibit different correlations in comparison to separable states because
a bipartite quantum state cannot be perceived as two single particles. This alone can,
however, not be used to transmit information, which would imply the possibility of su-
perluminal communication [46]. Furthermore, the measurement result on a qubit is still
just a classical bit value. Thus, one can ask the question whether there exist advantages
of quantum over classical correlations at all. It was recognized over the last decades that
the answer is positive and entanglement is now considered a powerful resource. The list
of possible applications is long and includes, as prominent examples, quantum cryptogra-
phy4 [11], which has already reached a mature state of development [53–55] and quantum
computers, which are still a vague dream. Doubtlessly, the invention and experimental
realization of quantum teleportation [12, 19] were key steps in terms of the applications
of entanglement. For this reason and also because it is the starting point for some ap-
plications of the states investigated in chapter 6 and chapter 7, we continue with a short
description of this quantum communication protocol.

The task is to transfer a quantum state to a remote location without physically sending
it. Imagine scientists on Earth that want to transmit an arbitrary, unknown quantum
state to their colleagues on Mars. The strategy to simply measure the qubit (destroying
the actual input state) and transfer the measurement basis and result via a classical
channel to Mars where the state is then prepared accordingly, is not very satisfying. The
achieved, so-called classical, fidelity of the (statistically mixed) state prepared on Mars
would be, averaged over all possible input states, Fclass = 2/3.

The idea of quantum teleportation is that one can use a shared entangled state as
quantum resource that allows the transfer of quantum information from the input state
to the remote particle of the shared state on Mars. The scheme is depicted in figure 2.2.
Mars and Earth share each one particle of a Bell state, e.g. |ψ− 〉. Together with the

4Note that most schemes do not need entanglement, e.g. [52].
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2.2 Bipartite entanglement

Figure 2.2: Quantum teleportation between Earth and Mars. The transfer of an input
qubit |φ 〉 between the two remote locations is achieved using a Bell state |ψ− 〉 as quantum
resource and two classical bits. The latter is the result of a Bell state measurement on Earth
and enables Mars to transform his state to the original state |φ 〉.

initial state |φ 〉 = (α |H 〉♁ + β |V 〉♁) on earth the total three qubit state is:

|φ 〉♁ |ψ− 〉♁♂ = (α |H 〉+ β |V 〉)♁ |ψ− 〉♁♂ = |φ+ 〉♁♁ (β |H 〉 − α |V 〉)♂
+ |ψ+ 〉♁♁ (α |H 〉 − β |V 〉)♂
+ |φ− 〉♁♁ (β |H 〉+ α |V 〉)♂
− |ψ− 〉♁♁ (α |H 〉+ β |V 〉)♂

= i |φ+ 〉♁♁ σ̂y |φ 〉♂
+ |ψ+ 〉♁♁ σ̂z |φ 〉♂
+ |φ− 〉♁♁ σ̂x |φ 〉♂
− |ψ− 〉♁♁ 11 |φ 〉♂,

where the indices ♁ and ♂ represent Earth and Mars, respectively. As one can see, the
state can be rewritten as a superposition of four terms that consist each of one Bell state
on Earth and the initial state on Mars, up to a transformation that is correlated with
the Bell state. Thus, a projective measurement onto the Bell basis5 allows to prepare the
input state on Mars up to a local transformation that depends on the measurement result
of a Bell state measurement on earth. This is not a superluminal information transfer,
because we need to tell Mars the transformation that has to be applied via a classical
channel, otherwise there is just white noise at Mars. Important is, however, that the
initial state is teleported with a fidelity of 100%. Thus it is possible to transfer the two
real parameters that define the input state (θ and φ in equation 2.1) to the output state
using the entangled resource and communication of only two classical bits. Thereby we
can gain no knowledge about the teleported state itself. If we exactly knew the state to
be transferred, this task would need an infinite number of classical bits without the use
of a quantum resource.

What, if there is for some reason no perfect Bell state shared between Earth and Mars,
e.g. the source of entangled photons is not perfect and emits some mixed state. The
question is then, what is the best possible fidelity between the teleported and the initial

5Which can be realized, among others, with the phase gate described in chapter 5.
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state that can be achieved. Horodecki [56] found that the decisive quantity is the shared
state’s distance to the closest maximally entangled pure state. This state can always
be transformed to a singlet state via LU. The resulting distance is then called maximal
singlet fraction:

FMSF (ρ) = max
LU

(〈ψ− |LUρLU t |ψ− 〉), (2.37)

where the maximum is taken over all LU -operations. The fidelity of teleportation Ftel

achieved with the state ρ, averaged over all possible input states, is then given by the
equation

Ftel = (2FMSF + 1)/3. (2.38)

One might intuitively think that this quantifies the entanglement of the quantum state.
The maximal singlet fraction does not fulfill, however, several criteria that are expected
from entanglement measures, which will be described in the following.

2.3 Separability criteria and entanglement measures

The intuitive definition of separability (equation 2.27) is in strong contrast to the hard
task of testing, whether a quantum state is separable (separability problem). Criteria that
allow to test for the separability of a quantum state are fundamental tools for experiments
where we seek to prove that entanglement can indeed be observed. For multipartite
systems such criteria should also be able to test whether parts of the system are separable
from the rest. Here, some criteria will be introduced for later application to the quantum
states observed in our experiments. Closely related and also of importance for experiments
with entangled states is the quantification of entanglement. Thus, also some results on
entanglement measures will be introduced here. For a more extensive overview on this
subject, the interested reader is referred to [57–60].

2.3.1 Definition of entanglement measures

There are several reasonable ways to quantify entanglement. For example, by the violation
of a Bell inequalities, or how well it is suited for a certain task (e.g. teleporation by
calculation of the maximal singlet fraction). Not all of these values are, however, proper
entanglement measures. Whether a quantity is a good measure, can be decided using a
certain set of conditions that should be fulfilled [61, 62]. Three conditions are broadly
accepted as criteria for an entanglement measure and define entanglement monotones [63].

The function E of a quantum state is an entanglement monotone if:

� It vanishes for all separable states,
E(ρsep) = 0.

� It does not increase using only local operations and classical communication (which
means, without the use of quantum channels).
E(ΛLOCCρΛt

LOCC) ≤ E(ρ) ⇒ E(UρU∗) = E(ρ).

� It is convex (because mixing of states can only decrease the overall entanglement).
E(λρ1 + (1− λ)ρ1) ≤ λE(ρ) + (1− λ)E(ρ1).
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2.3 Separability criteria and entanglement measures

In the following, several entanglement measures will be introduced. First, however, let
us remember the maximal singlet fraction, section 2.2.4. This quantity gives information
about how well a quantum state can be used for teleportation, a fundamental protocol
relying on the entanglement between two parties. Intuitively one might expect that this
also should provide a good entanglement measure. But as it turns out, the maximal singlet
fraction is not an entanglement monotone as it can be increased under local operations
and classical communication (LOCC). This example shows that it is not easy to guess
whether some function of quantum states serves as a good entanglement measure.

2.3.2 Entropy, entanglement of formation and concurrence

For the simplest case, bipartite pure quantum states, we have already mentioned a prop-
erty that is related to the question, whether the state is entangled: In section 2.2.1 it was
discussed that one photon of a Bell state appears locally as white noise. In contrast, the
particles of a pure separable state are pure at both locations. For example:

TrA( |ψ− 〉AB〈ψ− | ) = 11/2B (2.39)
TrA( |(H ⊗ L) 〉AB〈 (H ⊗ L) | ) = |H 〉B〈H | (2.40)

Thus, a pure quantum state is separable if tracing out one qubit results in a pure residual
qubit. As it turns out, this insight can be used as one approach to quantify pure state
entanglement. To do so, the von Neumann Entropy S of the residual state is calculated
(see e.g. [46]).

ES(ρAB) = S(TrA(ρAB)) = S(TrB(ρAB)), (2.41)

where ρAB =|ψ 〉〈ψ |, and S is the von Neumann Entropy

S(ρ) = −Tr(ρ log2(ρ)). (2.42)

This was shown to be a good entanglement measure according to the previously mentioned
conditions [64]. This works obviously only for pure bipartite quantum states. If the state
we look at is mixed, then it is not clear whether the mixedness in the single qubits results
from entanglement or from the mixedness of the two-qubit state.

There is a rather formal method how to generalize entanglement measures from pure
to mixed states. As we have seen, an infinity of decompositions of a mixed state into
pure states ρ =

∑
i pi |ψi 〉〈ψi | exists. From the entropies of the pure states |ψi 〉 one

can easily calculate their weighted average entropies. As the value of the average entropy
depends on the decomposition, it is not an entanglement monotone. The infimum of all
averaged entropies, however, defines an entanglement monotone called entanglement of
formation EF :

EF (ρ) ≡ inf
ρ=

∑
i Pi |ψi 〉〈ψi |

∑

i

PiES( |ψi 〉) (2.43)

The entanglement of formation can roughly be interpreted as the amount of quantum
resources needed to form a certain state [65, 66]. This way of generalizing pure state
entanglement measures to mixed states is called convex roof construction. The task of
minimizing over all possible decompositions is, however, hard.

Fortunately, Wootters and coworkers [66] succeeded to find an explicit form for the
entanglement of formation. They showed that there is a relation between the entanglement
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2 Entanglement of Qubits

of formation and the spinflip symmetry of two-qubit states. Hereby, they introduced a
completely new entanglement measure, the concurrence C. The concurrence is defined as
the fidelity of a quantum state to its spinflipped counterpart. A look at the Bell states
(equation 2.20) suggests that this is sensible as a spinflip operation on both qubits leads
always to the same quantum state. For separable states this is obviously not the case. To
formally obtain the universal6 spin flip of a general single qubit state |φ 〉 we act with the
σ̂y Pauli matrix on the complex conjugate state: σ̂y |φ∗ 〉. Thus, for pure states, we have
[66]:

C = 〈ψ | σ̂y ⊗ σ̂y |ψ∗ 〉 (2.44)

To obtain the concurrence for mixed states we need to calculate the eigenvalues λi of the
product of the state ρ and its spin flipped counterpart ρ̃. The concurrence is given by:

C = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4) (2.45)

where λ1 is the maximal eigenvalue. From this easily calculable quantity, the entanglement
of formation can now be derived by [67]:

EF (ρ) = h

(
1 +

√
1− C2(ρ)
2

)
(2.46)

where h(x) is the binary entropy function:

h(x) = −x log2 x− (1− x) log2(1− x). (2.47)

Thus, the entanglement of formation and the concurrence are entanglement measures
for mixed states that are closely related despite of their very different origin. In the
investigation of two-qubit states the concurrence is the value that is more used. Also in
the analysis in the experimental part of this thesis, we will rely on the concurrence. In
addition we will further make use of another entanglement measure that is not equivalent
to the concurrence and will be introduced in the following.

2.3.3 The Peres-Horodecki criterion and negativity

A different separability criterion was introduced by Horodecki et al. [68, 69]. It is, in
its nature, applicable to mixed quantum states. Imagine a transformation M that maps
all physical quantum states onto physical quantum states. Note that this does not mean
that the transformation is itself physical7. Such a transformation is called positive map,
because physical states have positive density operators (property 2 on page 9). Now we
consider two subsets of a quantum system that are separable, i.e. that can be written as
a tensor product of the states of the subsets. When a positive map acts on one subset,
then the result is again a tensor product of two physical states, i.e. another physical state
having only positive eigenvalues. In contrast, after the maps action on an entangled state,
the complete resulting state is not necessarily physical.

The Peres-Horodecki criterion uses the transposition as positive map. This map is
closely related to a time-reversal of the corresponding system [70]. A transposition of

6The σ̂y rotation only, does not flip R ↔ L.
7A counterexample is the universal spin-flip discussed in the last section.
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2.3 Separability criteria and entanglement measures

a subset of particles is called a partial transposition. Here, a simple two-qubit example
where the second qubit is transposed:

|φ+ 〉〈φ+ | = 1
2 (|HH 〉〈HH | + |HH 〉〈V V | + |V V 〉〈HH |+ |V V 〉〈V V |)

PT→ 1
2 (|HH 〉〈HH | + |HV 〉〈V H | + |V H 〉〈HV |+ |V V 〉〈V V |) (2.48)

This is not a physical state as the second and third term indicate coherence between un-
populated terms, i.e. |HV 〉〈HV | and |V H 〉〈V H |. Accordingly, the partially transposed
density matrix has a negative eigenvalue of −1/2. We can conclude that the two subsets
of particles (in this case the two qubits) are entangled.

The Peres-Horodecki criterion says that two states (or multipartite sets of states) are
entangled if the partially transposed density matrix has a negative eigenvalue. It is a
necessary criterion, but only sufficient for the dimensions 2x2 (two qubits)and 2x3 (one
qubit and one qutrit). In all other cases there exist non-separable states with a positive
partial transposition (PPT) 8.

This criterion is a very good starting point for an entanglement measure that is com-
putable for mixed states. One can indeed prove that the sum of the negative eigenvalues
forms a own entanglement measure, the negativity EN [70]. As the density matrix is
normalized, the negativity is given by:

EN =
1
2

(
4∑

i=1

∣∣λT
i

∣∣− 1

)
, (2.49)

where λT
i denote the eigenvalues of the partially transposed density matrix. For the Bell

state in the example (equation 2.48) the maximal value of EN = 1/2 is reached. To
obtain an additive9 and normalized entanglement measure one can , instead, calculate
the logarithmic negativity: ElN = log2(2EN + 1), reaching the value ElN = 1 for the Bell
states.

There are several issues necessary to discuss in this context. On the one hand, as
we have seen before, the Peres-Horodecki criterion does not detect entanglement for two
systems in any dimension, thus there are entangled states (called bound entangled states)
that have zero negativity. Further the ordering of mixed states given by the negativity is
different from the one induced by the entanglement of formation [57]: One state can be
more entangled than another according to one measure and vice versa according to the
other.

2.3.4 Entanglement witnesses and the geometric measure

If the density operator of a state is known, then the Peres-Horodecki criterion is a very
easy-to-use tool to test entanglement between two subsets of particles. To experimentally
obtain the density operator means to gather the complete information about a quantum
state. This requires a lot of experimental effort in the sense that data for a lot of different

8These states are called bound entangled as it was shown, that one cannot distill an negative partial
transpose state (NPT) from many copies of such a state.

9The logarithmic negativity of a tensor product of states equals the sum of the logarithmic negativities
of each state.
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2 Entanglement of Qubits

Figure 2.3: An entanglement witness is a hyperplane in the convex space of mixed states
(dashed line), separating all separable states from a subset of entangled states. An opti-
mal witness (non-dashed line) is tangent to the separable states and provides the optimal
separation for the state that one seeks test (ρideal).

measurement settings need to be collected, growing approximately exponentially with the
number of qubits (a detailed discussion follows in section 4.3.2. Thus, tools for a more
efficient detection of entanglement are required.

An elegant solution to this problem are entanglement witnesses. Using the convexity
of the space of mixed states they allow to efficiently detect entanglement. In addition,
the criteria and measures introduced so far were, apart from the tangle, tailored to study
entanglement between two systems, including multipartite subsets of multiqubit states.
Entanglement witnesses are not based on this kind of bisplitting and can be tailored
such that genuine multipartite entanglement is studied directly. It makes entanglement
witnesses a powerful tool for the analysis of multipartite states. Here, we will shortly
present the idea of entanglement witnesses and their connection to the geometric measure
of entanglement, a measure that applies to mixed multipartite entanglement.

The space of all density matrices (figure 2.3) is a convex space, as the decomposition
into pure states is always a convex linear combination. In this space we can, using an
operator W, define a hyperplane of all states ρ that fulfill the equality:

Tr(Wρ) = 0 (2.50)

The main idea is that the space of all separable states ρsep is a convex subspace, too.
This holds due to the fact that they are given by convex combinations of pure separable
states. Therefore it is always possible to define the hyperplane such that the whole space
is cut into a part that contains only entangled states and another one that includes all
separable states ρsep:

Tr(Wρsep) > 0 (2.51)

The operator W is called an entanglement witness, because it is constructed such that:

Tr(Wρ) < 0 =⇒ ρ entangled. (2.52)

A negative expectation value of a state with this operator proves its entanglement. Fur-
thermore, it was shown that a particular state ρ0 is entangled if and only if such an
entanglement witness exists, i.e. if one can find an operator W that fulfills the mentioned
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2.3 Separability criteria and entanglement measures

conditions with Tr(Wρ0) < 0. A disadvantage is that, while the Peres-Horodecki criterion
detects all distillable entangled states with only one test, entanglement witnesses do not
detect the entanglement of all states, i.e. the states in the dark region on the left hand
side of the witness hyperplane in figure 2.3. In practice we need to use a witness that is
tailored to the state we want to detect. This is, however, not a major disadvantage for the
experimentalist, as we try to achieve a certain known entangled state ρideal and expect the
actually prepared state to be in its vicinity, detectable by the same entanglement witness.

Still, it is important to find entanglement witnesses such that as many entangled states
as possible are detected. In the ideal case the corresponding hyperplane is a tangent to
the set of separable states; then the witness is called optimal (figure 2.3). The generic
way to define a witness Wψ detecting entanglement in the vicinity of a certain pure state
ρideal =|ψ 〉〈ψ | is the following:

Wψ = α11− |ψ 〉〈ψ |, (2.53)

where, for an optimal entanglement witness, α = supφsep
‖〈φsep |ψ〉‖ with the supremum

taken over all separable pure states |φsep 〉.
The generic form of the operator is merely one possibility of building an entanglement

witness. In the experimental part of this thesis, several witnesses, that rely on properties
of the quantum states we desire to analyze experimentally, are used. The goal is, in
general, to obtain witnesses that give a strong separation from separable states with little
experimental effort, i.e. few measurement settings. For example, the entanglement of both
of the four-party entangled quantum states obtained in this thesis can be detected with
2 measurement settings. In comparison, 16 and 21 settings are needed for the generic
witness, respectively and 81 for a complete state estimation.

Intuitively one might guess that there should be a relation between the witness expecta-
tion value and the strength of entanglement in a certain quantum state. It took, however,
quite long until, only recently, these relations where revealed [71, 72]. Conclusion from
the expectation values of entanglement witnesses can be drawn for several entanglement
measures. Out of those, the geometric measure of entanglement (GME, [73, 74]) is par-
ticularily closely related to the generic form of entanglement witnesses [75] and will be
introduced in the following. It is a multipartite entanglement measure and has a intuitive
meaning: The GME is simply the distance of a given pure quantum state to the next
separable state:

EG(ψ) = min
|φ 〉

sep

(‖ |ψ 〉 − |φ 〉‖) (2.54)

Goldbart and Wei [75] generalized this measure of entanglement to mixed states via a
convex roof construction (similar to the method to obtain the entanglement of formation
from the von Neumann entropy). In general it is not a simple task to calculate the GME
for a given density matrix, as several optimizations have to be performed. Only recently
Gühne and coworkers [72] presented a simple way to calculate lower bounds on the GME
out of the results of witness measurements and applied it to some experiments. There
is an particularily simple expression to obtain this bound on the GME based on generic
entanglement witness:

EG(ρ) ≥ max
r

(r〈Wψρ〉 − ÊG(rWψ)), (2.55)
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where ÊG(rWψ) is defined as:

ÊG(rWψ) =
1− r

2
+

1
2

√
(1− r)2 + 4rEG(ψ) + rα− 1. (2.56)

Wψ, α and |ψ 〉 are defined as in equation 2.53 and the geometric measure of the theoretical
state EG(ψ) has to be known. If the optimal generic entanglement witness is known this
measure can be obtained from the simple relation EG(ψ) = 1− αopt, presented in [75].

2.4 Summary

In this chapter, several fundamental principles of quantum information theory have been
presented for further use throughout this thesis. A focus was hereby put on the introduc-
tion to the concept of entanglement.

Entanglement is a natural consequence of the quantum mechanical superposition prin-
ciple in multipartite systems resulting in states, where the individual particles cannot
be completely described separately. To create entanglement we need, in the language
of quantum information, non-local quantum gates like the CNOT or CP gates, where an
experimental implementation of the latter is presented in chapter 5. Once prepared, en-
tangled states can be used for various applications, for example for quantum teleportation,
which plays a central role for many other applications. The entangled states presented in
this thesis will be shown to be useful as resource for multiparty extensions of quantum
teleportation.

Despite of the relatively simple definition of entanglement, it is hard to decide whether
a certain state is separable or entangled, in particular for mixed states. Thus, methods
to approach this separability problem are necessary in order to test whether the states ob-
served in our experiments are entangled. For two-qubit mixed states there exist conclusive
separability criteria and even the quantification of entanglement with different measures is
possible. Out of those, we will use here two inequivalent entanglement measures that can
be explicitly computed for mixed states: the concurrence and the logarithmic negativity.
The presented methods can, however, not be directly generalized to multipartite states
and the separability problem becomes hard to decide in general. Yet, there is a versatile
tool to detect entanglement of multipartite states in the experiment, namely entanglement
witnesses. Based on these, it is even possible to deduce lower bounds on the geometric
measure of entanglement. When studying multipartite entangled states it is, however, not
sufficient to restrict to a mere detection or quantification of entanglement, because there
exist different types of entanglement, as will be discussed in the next chapter.
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Entanglement

Multipartite entanglement has many facets and is therefore much more difficult to under-
stand than entanglement in bipartite systems. This chapter is devoted to a discussion of
the different types of multipartite entanglement. It is not obvious what ”different types”
exactly means and there are various ways to perceive this. Several aspects will be dis-
cussed, starting from the most abstract classification and finishing with a very concrete
introduction of experimentally testable properties of quantum states, which are investi-
gated in the presented experiments (chapter 6 and 7).

The abstract classification based on stochastic local operations and classical communi-
cation (SLOCC) allows to identify classes of pure states that are useful for the same kind
of quantum communication tasks [76]. The classification for a certain fixed number of
N qubits covers all pure N -qubit states and has recently been developed for arbitrary N
[23–26].

While the classification via SLOCC constitutes a framework where relations between
all multipartite entangled states become visible, it does not provide full understanding
of their entanglement. There are other approaches to deepen this understanding, e.g. to
focus on families of quantum states that share a common structure allowing a simpli-
fied description. In this context, one section is dedicated to two extraordinary families
of quantum states that are especially relevant in this work: graph and symmetric Dicke
states.
The graph states are strongly entangled and can be treated more simply due to their
representation by mathematical graphs and the stabilizer formalism [77–79]. Dicke states
are eigenstates of the spin-z operator (Ĵz) and the total spin (Ĵ2) [39]. We consider states
with maximal total spin, which are symmetric under permutation of qubits. That, again,
simplifies their description and is the cause of extraordinary properties [80]. Representa-
tives of both groups exist for any multipartite system; therefore, this approach includes
also relations between states of a different number of qubits.
After these more general approaches to the classification of entangled states, several con-
crete examples of four-qubit entangled states that were important in the field of experi-
mental analysis and application of states will be introduced.

A physical analysis of quantum states needs to include an investigation of their entan-
glement properties. Particularly in experiments, it is of importance to test how well the
observed quantum state reproduces the properties of the desired state. Thus, the identifi-
cation of relevant properties, especially with respect to potential applications, is an impor-
tant step. Permutation symmetry will be discussed as one of those. Further, entanglement
persistency (sometimes called robustness) and connectedness [81], which play an impor-
tant role in our experimental analysis, will be introduced and shown to be useful tools to
specify a state’s applicability for certain quantum communication protocols [82, 83].
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3.1 Classification via SLOCC

If different types of entanglement exist, then a single value, like an entanglement measure,
alone is not a satisfying description of the entanglement in a multipartite state.

Entanglement measures were designed such, that they cannot increase under LOCC
(section 2.3). This does, however, not mean that two states that have the same value
can necessarily be converted into one another via LOCC. If it is not the case then we can
interpret this such that these two states belong to different kinds, or equivalence classes,
of entanglement with respect to LOCC.

Imagine the particles of a multiqubit state to be distributed between many parties.
Their task is to transform this state into another one and back by using a certain set of
operations. If this is possible, then we consider the two states as equivalent with respect
to these operations. In the context of entanglement monotones, LOCC have already been
used to identify states with the same amount of entanglement. They do, however, not seem
to be preferable for a classification, because then even two states with a different amount
of entanglement necessarily belong to separate entanglement classes, as they cannot be
transformed into one another via LOCC. Thus, operations that are more general are
necessary. There are several possibilities to loosen the restrictions of LOCC operations
[76]. The parties might use LOCC operation acting not only to a single but a huge amount
of copies of the same quantum state (asymptotic LOCC). Other possibilities are that a
small amount of additional quantum resources are shared between the different parties or
that they can locally use additional ancillary qubits (catalytic LOCC) that help converting
between different states, similar like a catalyzer in a chemical reaction. Another approach
turned out to be very successful, first in the three qubit case [23], later in the four qubit
case [24] and recently it was even generalized recursively to N qubits [25]. This approach
relies on stochastic equivalence (stochastic LOCC or SLOCC operations): Two states are
defined as equivalent if there is a non-vanishing probability to convert the one into the
other (and back) via LOCC. Here, the classification based on this approach is presented.

3.1.1 Three-qubit classification

In 2000, Dür and coworkers [23] pointed out that six equivalence classes exist for pure
states of three qubits, with respect to SLOCC operations. They are shown in figure 3.1 a).
As one can see, there is also a hierarchy between the states. It is caused by the possibility
to irreversibly transform from the upper to the lower types of entanglement. As one
would expect, the completely separable states (symbolized by A-B-C) are at the very
bottom. In the middle, there are biseparable1 states, where two qubits are entangled but
separated from the third one (A-BC, C-AB and B-AC). These are three distinct classes,
as one cannot create entanglement between the separated qubit and any of the others via
SLOCC. The surprise that came with this classification was that there exist two distinct
kinds of, so-called, genuine tripartite entanglement: the GHZ- and W- class. They are

1Biseparable states consist of at least two separable subsets of particles.
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3.1 Classification via SLOCC

Figure 3.1: The classification of pure states (a) consists of three hierarchies: separable
states (A-B-C), biseparable states (A-BC and permutations) and genuinely tripartite entan-
gled states (GHZ and W). SLOCC operations allow one-way transformations from top to
bottom. The mixed state classification (b) has an onion type structure. Starting from the
smallest subset consisting of convex combinations of separable state, successively different
other types of less separable states can be added by extending the convex hull. First, by
adding biseparable, then W3 and finally GHZ3 states.

named after the respective representative states, the states |GHZ3 〉 and |W3 〉:

|GHZ3 〉 =
1√
2

( |HHH 〉+ |V V V 〉) , (3.1)

|W3 〉 =
1√
3

( |HHV 〉+ |HV H 〉+ |V HH 〉) . (3.2)

Apart from the fact that members of these two different classes cannot be converted into
one another via SLOCC, it was shown that even some shared quantum resource of bi- or
tripartite entangled states cannot catalyze the transformation [84]. It is worth mentioning
that the space of three particle states is five dimensional (according to a parameterization
by Aćın et al. [85]). A general W3 state is described by three parameters only and thus
W3 states have zero measure in contrast to the GHZ3 states, which are characterized by
five parameters.

In [23], a method to decide to which kind of equivalence class a certain pure state
belongs to is presented. It relies on a pure state three-qubit entanglement measure called
Wootters tangle τ [67], which is closely related to the concurrence (section 2.3.2). Imagine
a tripartite state |ψ 〉, where one qubit, e.g. A, shares some entanglement with qubit
B (with the concurrence CA−B

ψ ) and also with qubit C (CA−C
ψ ) after tracing over the

respective other qubit. The question is, whether the entanglement shared between A and
the complete subsystem BC (CA−BC

ψ ) is simply the sum of the entanglement with each
single qubit? The answer is no! There might still be entanglement between A − BC on
top of the pairwise entanglement.
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The difference between the total and the pairwise concurrence squared is the definition
of Wootters tangle τ :

τψ =
(
CA−BC

ψ

)2
−

(
CA−B

ψ

)2
−

(
CA−C

ψ

)2
(3.3)

=
(
CB−AC

ψ

)2
−

(
CB−A

ψ

)2
−

(
CB−C

ψ

)2
. (3.4)

Hereby the value τψ does not depend on the qubit chosen as starting point (as shown
here for A and B). In order to decide which class of entanglement a pure state belongs
to, it is sufficient to evaluate Wootters tangle and the concurrence between two-qubit
subsets: For the class A-B-C, there is no entanglement between any of the pairs. For the
three different biseparable classes there is a non-vanishing concurrence only between one
pair of qubits. By definition, Wootters tangle is zero for all of these cases. Somewhat
surprisingly, this is also true for the W3 states. Thus, a vanishing tangle, together with
a non-zero concurrence between all qubit pairs in the state indicates a W3 state. All
states with non-vanishing tangle belong to the GHZ3 class. Its representative, the GHZ3

state, is not entangled in any pair of qubits after tracing out the third qubit. However,
its Wootters tangle equals one:

τW3 = 0 , τGHZ3 = 1 (3.5)
Cij

W3
= 2/3 , Cij

GHZ3
= 0, (3.6)

where Cij denotes the concurrence between for the qubits pairs i 6= j.
States where all concurrences and the tangle take a value greater than zero are some-

times called mixed three qubit entangled (still, they are pure states) [86]. A very important
member of these states is the so-called G3 state [87]:

|G3 〉 =
1√
2

( |W3 〉+ |W̄3 〉
)

(3.7)

=
1√
6

( |HHV 〉+ |HV H 〉+ |V HH 〉+ |HV V 〉+ |V HV 〉+ |V V H 〉) .

The concurrence between each pair is Cij
G3

= 1/3 and Wootters tangle has also the value
τ = 1/3 proving that it is indeed a GHZ3 class state. For higher numbers of qubits,
G states are always defined as the superposition of a W and a spin flipped W (W ) state:
|GN 〉 = 1√

2
( |WN 〉+ |WN 〉).

The generalization of the presented classification to mixed states is not straightforward.
The mentioned criterion for the distinction of the different classes does not apply. To
demonstrate the difficulty, consider for example an equally weighted mixture of three
bipartite entangled states (ρfool = 1/3(ρA−BC + ρB−AC + ρC−AB), [88]). Here, all pairs
are entangled (like in W3), even though it is a biseparable and not a genuinely tripartite
entangled state.

Despite of this, mixed three qubit states have been classified in [89] and the corre-
sponding structure is depicted in figure 3.1 b). The set A-B-C consists of all convex
combinations of pure completely separable states. The set of mixed biseparable states is
the convex combination of all pure biseparable states of the three different classes of bisep-
arable entanglement and the convex hull thereof. Any state that belongs to the set GHZ
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but not W (GHZ/W) has a GHZ3 state in every decomposition. Note that the mixed
states of type W/B are of non-zero measure in the space of mixed states (in contrast to
the W class for pure states).

With a classification of mixed quantum states available, how can one judge where a
certain measured state belongs to? At this point, entanglement witnesses show their
full strength. Again an entanglement witness corresponds to a hyperplane in the space
depicted in figure 3.1 b). Thus, it allows distinguishing between, for example, GHZ3 and
W3 states or genuine tripartite and biseparable states. Aćın and coworkers also showed
the generic witnesses for the representative states in [89]. The generic witness that detects
states close to |GHZ3 〉 that belong to GHZ/W is:

WGHZ3 =
3
4

11− |GHZ3 〉〈GHZ3 | (3.8)

and there are two kinds of generic W3 witnesses, i.e., witnesses that detect genuine tri-
partite entanglement:

W1
W3

=
1
2

11− |GHZ3 〉〈GHZ3 | and W2
W3

=
2
3

11− |W3 〉〈W3 | (3.9)

These W3 witnesses were, for example, used to confirm the tripartite entanglement in the
experimentally observed W3 state [90, 91]. A fact that we could only prove strictly by
using entanglement witnesses [92].

3.1.2 Four-qubit classification

The transfer of the results on three-qubit entanglement to multiqubit entanglement is
not straightforward. Already for four qubits, there is an infinite number of classes with
respect to SLOCC. Verstraete and coworkers [24] found a continuous set of representatives
for all pure four-partite quantum states. These representative states are split into nine
families of SLOCC-classes (SLOCC-families), where each is parameterized with up to four
independent complex parameters. The first one is:

Gabcd =
a + d

2
( |HHHH 〉+ |V V V V 〉) +

a− d

2
( |HHV V 〉+ |V V HH 〉)

+
b + c

2
( |HV HV 〉+ |V HV H 〉) +

b− c

2
( |HV V H 〉+ |V HHV 〉). (3.10)

The parameters a, b, c, d are complex with non-negative real part. The corresponding
state Gabcd is genuinely four-partite entangled, except when it takes the form |Bell 〉 ⊗
|Bell 〉 (e.g. a = 1, b = 0, c = 0, d = 0). Most of the states that have so far been
identified as important (see also the next section) belong to this SLOCC-family. The
most prominent exception is the four-qubit W4 state. It is the natural extension of the
W3 state: ( |W4 〉 = 1/2( |HHHV 〉+ |HV HH 〉+ |HHV H 〉+ |V HHH 〉)) and belongs
to the SLOCC-family represented by:

Lab3 =
a− b

2
( |HV V H 〉+ |V HHV 〉) +

a + b

2
( |HV HV 〉+ |V HV H 〉) + (3.11)

a( |HHHH 〉+ |V V V V 〉) +
i√
2
( |HHHV 〉+ |HHV H 〉+ |HV V V 〉+ |V HV V 〉).
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3 Classifications of Multipartite Entanglement

Both types of states, Gabcd and Lab3 , contain genuine four-partite entanglement. However,
the states Gabcd are the most remarkable. In [24], they are claimed to be the states with
maximal four-partite entanglement as they are shown to maximize several entanglement
monotones. A simple argument supporting this claim is the fact that for any of these
representatives the residual state after tracing out all except for one qubit is maximally
mixed. In section 2.3.2 (page 17) it was shown that such maximal local entropy is a
sign for maximal entanglement in the two-qubit case. According to [93], this property is
unique for states of the form Gabcd.

It is important to mention that the work on SLOCC classification of four-qubit entan-
gled states is still in progress. Very recently, another scheme how to inductively construct
SLOCC entanglement classes for any number of qubits was introduced [25, 26]. The
classification reproduces the results presented for three qubits [23] but gives eight in-
equivalent types of four-qubit entanglement (apart form the degenerate classes), thus is
not equivalent to the classification in [93], which was discussed here.

3.2 Phenomenology of quantum states

In recent years, several multipartite entangled states have been identified as interesting
with respect to their applicability for certain tasks or due to particular properties like
a high degree of entanglement concerning violation of Bell inequalities, high persistency
against loss of photons and others.

In the following, the two families of multiqubit states of importance for this work
will be introduced: The graph states and the symmetric Dicke states. Especially the
study of Graph states with their unique properties turned out to be extremely fruitful
in quantum information science. But also the symmetric Dicke states offer, as we will
see, outstanding properties, like their high persistency against photon loss. In the last
part, several examples of four-partite entangled states that have been studied and partly
realized experimentally in the past will be introduced for a later comparison with the
Cluster and Dicke state.

3.2.1 Graph states

Graph states are, as the name indicates, multipartite entangled quantum states that
can be represented by mathematical graphs (see figure 3.2). The vertices of the graph
correspond to qubits and the edges to a next neighbor Ising-type interaction between the
connected vertices. In the language of quantum information this interaction can be seen
as a two qubit phase gate, which was discussed in section 2.2.3. The cluster states are a
particularly interesting subgroup of graph states, because they are the resource for one-
way quantum computation [33, 81]. Cluster states are graph states that are represented
by a periodical lattice.

The way graph states are constructed leads to a simple mathematical description via
the stabilizer formalism [94]. The graph state |g 〉 represented by a certain graph g fulfills
a set of eigenvalue equations that are constructed in the following way. The vertices of g
(and with them, the qubits) are numbered. For each vertex i we can define a stabilizing
operator Si as a tensor product of single qubit Pauli operators according to the following
rules: The Pauli operator corresponding to vertex i is σ̂z, the ones corresponding to
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3.2 Phenomenology of quantum states

Figure 3.2: Overview of the graphs of three (a) and four qubits (b and c). For three
qubits, the only graph corresponds to a GHZ3 state. The star configuration of four qubits
(b) represents the GHZ4 state, the linear configuration the state |C4 〉.

connected vertices are σ̂x and the rest by σ̂0 = 11. For a state of N qubits we find
therefore N stabilizing operators. The corresponding graph state is completely defined
by the conditions:

Si |g 〉 = ±1 |g 〉 ∀ vertices i. (3.12)

The signs in these eigenvalue equations can be chosen arbitrarily in the sense that the
resulting states differ only up to local unitary transformations. It is obvious, by definition,
that any products of the stabilizers Si are again stabilizing operators. All of them form
together the stabilizer group consisting of N2 operators including the identity.

All inequivalent graphs of three and four qubits are shown in figure 3.2. For three
particles there is only one type of graph, which corresponds to the state GHZ3. For four
qubits, exist two inequivalent graphs, a star and a linear configuration. They correspond
to the GHZ4 (see equation 3.19) and the cluster state |C4 〉, respectively. Before we discuss
the properties of graph states, let us shortly demonstrate the way of construction on the
example of the cluster state represented in figure 3.2 c). The corresponding eigenvalue
equations are:

σ̂x ⊗ σ̂z ⊗ σ̂0 ⊗ σ̂0 |C4 〉 = |C4 〉 (3.13)
σ̂z ⊗ σ̂x ⊗ σ̂z ⊗ σ̂0 |C4 〉 = |C4 〉
σ̂0 ⊗ σ̂z ⊗ σ̂x ⊗ σ̂z |C4 〉 = |C4 〉
σ̂0 ⊗ σ̂0 ⊗ σ̂z ⊗ σ̂x |C4 〉 = |C4 〉.

These equations are fulfilled by2:

|Cl 〉 =
1
2
( |+H + H 〉+ |+H − V 〉+ |−V −H 〉+ |−V + V 〉). (3.14)

Multipartite graph states have been presented in many experiments. The first one was
the observation of the state |GHZ3 〉 with photons [17]. Meanwhile, GHZ states of up to
six qubits have been demonstrated in multiphoton experiments [18, 95, 96]. In a recent
experiment also other six-photon graph states were observed [20]. Up to six trapped ions
have been prepared in GHZ states [22]. Further GHZ entanglement could be demonstrated
in NMR experiments [97] and also in continuous variable experiments similar correlations
could be demonstrated [98, 99].

Concerning applications, graph states play a significant role in quantum error correc-
tion and multiparticle quantum communication [28, 79, 94]. As mentioned before, cluster

2The whole stabilizing group can be found in, up to Hadamard gates acting on qubits 1 and 4, in table 6.1.
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3 Classifications of Multipartite Entanglement

states are the resource for one-way quantum computation [33]. In particular, GHZ states
have a variety of possible applications, for example in multiparty quantum secret shar-
ing [30–32], teleportation [100], quantum key distribution [101, 102], dense coding [103],
quantum cloning [104] and open destination teleportation [96].

The eigenvalue equations for the stabilizers already imply that graph states have N2

perfect correlations (the expectation values of the stabilizers). As in the standard basis
the sum of all correlations squared add, for pure states, up to N2, we can directly conclude
that for graph states all the non-stabilizer correlations must be zero. This allows a simple
evaluation of the fidelity of a state ρ to the four-photon cluster state (N2 = 16):

F C4
ρ = 〈 C4 | ρ |C4 〉 =

1
16

256∑

i=1

Tr(ρK̂i)〈 C4 | K̂i |C4 〉 =
1
16

16∑

i=1

Tr(ρK̂stab
i )〈 C4 | K̂stab

i |C4 〉

(3.15)
where K̂i are all tensor products of Pauli matrices and K̂stab

i the stabilizers of the Cluster
state, with their signs chosen such that 〈 C4 | K̂stab

i |C4 〉 = 1. As one can see, the resulting
fidelity is the average of all sixteen stabilizer correlations. Thus, already in the four-qubit
case, instead of the 255 correlations constituting a density matrix, only 16 are necessary
to determine the fidelity. For higher numbers of qubits the reduction in measurement
settings increases strongly (2N instead of 4N ).

The stabilizer formalism also allows to detect the entanglement of an experimentally
observed state more easily. It was shown that special entanglement witnesses can be
constructed from the stabilizers of a state [105]. For cluster and GHZ states it is even
possible to detect genuine N -partite entanglement using only two measurement settings
[106]. In addition, the expectation values of certain sets of stabilizers do not allow a
description by local hidden variable theories. Thus, one can deduce Bell inequalities for
entangled graph states [107–109].

Apart from this special structure of correlations, graph states also show an interesting
behavior under projective measurements. In case one qubit is projected in the X- or
Z- basis, the resulting states are also graph states3, where the exact form depends on
the measurement result. For both bases the qubit is, obviously, not part of the state
anymore. The difference is that Z-basis projections disconnect the neighboring qubits,
while X-basis measurements leave them connected. By choosing the right measurement it
is thus possible to reduce the state to two qubits such that the residual state is entangled
independent of the outcome, i.e. with certainty! This property was studied in [33] and is
called maximal connectedness (see also section 3.3.3).

We might also ask the question, how many measurements are necessary to disentangle a
certain quantum state. For example, GHZ states become disentangled after projection of
only one qubit in the Z-basis. In contrast N/2 measurements are necessary to completely
disentangle a cluster state – the entanglement is more persistent [33].

3.2.2 Dicke states

Dicke states are the eigenstates of the total spin operator Ĵ2 and the spin operator in the z-
direction Ĵz in a coupled system of N spin-1

2 particles. The eigenvalues are j(j+1) and m,

3The resulting states are possibly biseparable.
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3.2 Phenomenology of quantum states

Figure 3.3: Scheme of all Dicke states of four qubits sorted by the eigenvalues of the Ĵ2

(lines) and Ĵz (columns). The two states for j = 0 span a two dimensional subspace, while
the three subspaces for j = 1 are three-dimensional spanned by the three states obtained by
qubit permutation of depicted state. Our major interest concerns the states with maximal
total spin, i.e. the symmetric Dicke states in the top row.

respectively. These Dicke states form a basis of the N-spin Hilbert space. Figure 3.3 shows
all Dicke states of four qubits (up to permutations of qubits). Here, we are interested in the
Dicke states that are completely symmetric under particle exchange. They are depicted
in the upper row, as all of them have a maximal total spin. Thus, these states may either
be described by the spin-z component m, or by the number of V ’s, which corresponds in
other physical systems, like e.g. atoms in a cavity, to the number of excitations. Here,
the latter notation is used and an N -qubit symmetric Dicke state with E excitations is
denoted by:

|D(E)
N 〉 =

(
N

E

)−1/2 ∑

k

Pk ( |V1, V2, ..., VE ,HE+1, ...,HN 〉) , (3.16)

where Pk denote all possible permutations of qubits. Note, that a σ̂x-transformation
(spin-flip in the computational basis) on each qubit transforms |D(E)

N 〉 to |D(N−E)
N 〉,

i.e. |D(E)
N 〉 ≡LU |D(N−E)

N 〉. Therefore, they have exactly the same entanglement prop-
erties. W states can, in this notation, be written as |WN 〉 = |D1

N 〉, their spin flipped
counterpart as |W̄N 〉 = |D(N−1)

N 〉. Note that GHZ4 states are not symmetric Dicke
states, but can be expressed as superposition thereof and are equivalent under LU to the
state with j=1 and m=0: |GHZ0

4 〉 = 1/
√

2( |HHV V 〉 − |V V HH 〉).
In the following, a short overview of the ideas how to observe Dicke states in experi-

mental setups will be presented. Concerning the creation of arbitrary superpositions of
symmetric Dicke states in quantum dots, there was a scheme proposed in [110]. Xiao et
al. [111] presented a scheme for the generation of Dicke state entanglement between the
excitations of atoms in a cavity. A way how to dynamically create Dicke states with atoms
in a cavity or trapped ions was presented in [112, 113]. Another way to obtain these states,
via an adiabatic process, in trapped ions was proposed by Unanyan et al. [114]. Further,
Stockton et al. [80] proposed the preparation of those states via collective spin measure-
ments of an atomic ensemble. Experimentally, the focus was so far put on the observation
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of W states. We observed the first three-photon W state via an interferometric linear op-
tics setup [88, 90, 115] based on non-collinear parametric down conversion (section 4.1.1).
A more efficient scheme based on collinear down conversion and a weak coherent beam was
presented by Mikami et al. [116] recently. Photonic experiments, despite many proposals,
did to our knowledge not demonstrate four-qubit W state entanglement up to now. With
trapped ions, however, W states of up to eight particles have been prepared by Häffner et
al. [21]. Concerning the applications of symmetric Dicke states, so far most of the research
focused on W states. For those, quantum telecloning [117, 118], generation of the uni-
versal entangled state [119], quantum teleportation [120–125], quantum key distribution
[126], and dense coding [124] have been proposed.

In chapter 7, the first experiment on the analysis of a symmetric Dicke state with more
than one excitation [127], the state D

(2)
4 is presented. There have been a few theoretical

investigations on this type of quantum states. Entanglement properties of symmetric Dicke
states are studied extensively in [40], in particular the behavior for a growing number of
qubits. I would like to note that some theoretical studies on symmetric entangled states
in general are presented in [51], which include also all superpositions of symmetric Dicke
states, in particular also GHZ states. Apart from this, there have been some general
studies on entanglement detection for these states, which I will discuss shortly in the
following. Thereby a focus is put on results that are useful for our investigation of D

(2)
4 .

Just like for graph states one can find entanglement witnesses for the analysis of symmet-
ric Dicke states in general [128]. One particularly peculiar example are the entanglement
witnesses of the form:

Ws = 〈Ĵ2
x〉+ 〈Ĵ2

y 〉 ≤ B, (3.17)

where Ĵx/y = 1/2
∑

k σk
x/y with e.g. σ3

x = 11 ⊗ 11 ⊗ σx ⊗ 11. The bound B depends on the
number of qubits and which type of separability should be excluded (complete separability,
biseparability, ...). The witness can easily be rewritten to the standard form, where a
negative expectation value proves entanglement: W ′

s = B−Ws. We preferred the notation
in equation 3.17, as it can be interpreted physically. To do so, we rewrite 〈Ĵ2

x〉 + 〈Ĵ2
y 〉 =

〈Ĵ2〉 − 〈Ĵ2
z 〉 where Ĵ = (Ĵx, Ĵy, Ĵz). As for symmetric states 〈Ĵ2〉 = N/2(N/2 + 1) our

criterion requires 〈Ĵ2
z 〉 ≥ B, i.e. the collective spin squared of biseparable symmetric

states in any direction cannot be arbitrarily small [129–131]. For Dicke states, however,
the expectation value 〈Ĵ2

z 〉 can even vanish when the number of excitations approaches
N/2. Thus, it is the difference between maximal total spin and zero spin squared in one
direction that cannot be achieved by separable, but only by entangled quantum states.
One example where this contrast is maximal is the state |D(2)

4 〉, which is subject of this
thesis. It should also be noted that the application of this criterion does not require
the ability to access individual qubits, but is intrinsically collective. For other physical
implementations of qubits, this might be a big advantage.

The behavior of entangled Dicke states under photon loss is completely different in
comparison to Graph states. The residual photons’ state after tracing out one qubit is a
mixed state of the following kind:

TrA(|D(E)
N 〉〈D(E)

N |) = E/N |D(E−1)
N−1 〉〈D(E−1)

N−1 | +(N − E)/N |D(E)
N−1 〉〈D(E)

N−1 | . (3.18)

At least one of the two terms is genuinely (N-1)-partite entangled, and so is the resulting
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3.2 Phenomenology of quantum states

mixed state. Thus, the entanglement persistency in Dicke states is very high, i.e. the
entanglement cannot be destroyed by qubit loss.

The behavior under projective measurements is also different from graph states. If both
terms in the previous equation are entangled, then any projective measurement will result
in a superposition of Dicke states. Otherwise, i.e. in case we start from a W state, there
is the possibility to disentangle the state with a certain probability. This is in strong
contrast to the behavior of graph states, where one can choose whether the entanglement
should be kept by choice of the measurement basis. Here, this is additionally dependent
on the measurement outcome.

In the following, we will restrict our investigation to four particles. This is the smallest
number of qubits where in addition to the W4 states also a Dicke state of the form |D(N/2)

N 〉
exists. In other words, there exists a symmetric state with a z-spin component m = 0.
The two kinds of states show very different behavior when studied for a large number of
particles [40]. On the one hand, when the entanglement between the pairs after tracing out
all other qubits was studied, the W states showed the maximal entanglement compared to
all other Dicke states (it was conjectured even in comparison to all quantum states [23]).
On the other hand the maximal entanglement between bisplittings4 is maximized for the
states D

(N/2)
N . This is, however, only true with respect to other Dicke states. There are

other states [51] that show a higher degree of entanglement in this respect.

3.2.3 Overview of important four-qubit entangled states

After these more general considerations, several relevant examples of four-photon entan-
gled states are presented in the following. This will allow later comparison with the states
that were prepared experimentally.

� The GHZ4 state
The four-qubit GHZ4 state is the natural extension of its tripartite relative |GHZ3 〉
(equation 3.1):

|GHZ4 〉 =
1√
2
( |HHHH 〉+ |V V V V 〉). (3.19)

It is interesting to note that solely in the case of four qubits it can be transformed
into a G4 state via LU, i.e., by application of σ̂

1/4
z and a Hadamard gate H on each

qubit5 [87]:

|G4 〉 = (H⊗H⊗H⊗H) |GHZ4 〉 =
1√
2
( |W4 〉+ |W4 〉), (3.20)

with H = H · σ̂1/4
z . GHZ states are often considered as maximally entangled, partly

because they offer the highest possible violation of two setting Bell inequalities [132–
134]. One should emphasize, however, that this perception depends strongly on the
measures taken. The GHZ4 state is neither maximally entangled with respect to

4Bisplitting: The state is virtually cut in two parts and the entanglement between these parts is calcu-
lated.

5Application of σ̂
1/4
z switches the sign between the two terms in GHZ4.
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bisplittings [51], nor with respect to the geometric measure of entanglement (ta-
ble 3.2.3). As we have seen, GHZ states are graph states. The graph of the state
|GHZ4 〉 (up to LU) is shown in figure 3.2 b).

� The Cluster State
The four-photon cluster state is the only other graph state in four-qubit systems
(figure 3.2 c)). Therefore, it also shares some properties with the state |GHZ4 〉.
A detailed theoretical and experimental analysis will be discussed in chapter 6. We
implemented the state experimentally in the form:

|C4 〉 =
1
2
( |HHHH 〉+ |V V HH 〉+ |HHV V 〉 − |V V V V 〉) (3.21)

The major interest in cluster states stems from the applicability for one-way quan-
tum computing. In an experiment that was performed simultaneously with our
study of the cluster state (see chapter 6 and [135]), the implementation of a CNOT -
gate and the Grover search algorithm in a one-way quantum computation scheme
was shown [35].

� The W4 state
The four qubit W state is the natural extension of its three-qubit relative |W3 〉
(equation 3.2):

|W4 〉 =
1
2
( |HHHV 〉+ |HHV H 〉+ |HV HH 〉+ |V HHH 〉). (3.22)

It belongs to the symmetric Dicke states (figure 3.3) and is the only example of
a four-qubit entangled state discussed here that is not part of the Gabcd- but the
Lab3 SLOCC-family (equation 3.11). It is known to have the highest concurrence
between the pairs of subsets. It has, however, not the highest singlet fraction and
negativity, as we will see in chapter 7.

� The symmetric Dicke state with two excitations |D(2)
4 〉

This state had only few appearances in the literature (e.g. [75, 136]) before. This
is very surprising as it is also another very natural extension of the three-qubit W
state. It is defined by:

|D(2)
4 〉 =

√
1
6

( |HHV V 〉+ |HV HV 〉+ |HV V H 〉
+ |V HHV 〉+ |V HV H 〉+ |V V HH 〉) (3.23)

and as an interesting curiosity it can be rewritten as:

(H⊗H⊗H⊗H)( |D(2)
4 〉) =

1
2
(
√

3 |GHZ4 〉 − |D(2)
4 〉). (3.24)

Despite of the different properties of the states |GHZ4 〉 and |D(2)
4 〉, there is a

strong similarity between them in this representation, which is also visible in the
experiment (figure 7.2). The state |D(2)

4 〉 is, like the W4 state, an entangled sym-
metric Dicke state (figure 3.3). Note that it does, however, not belong to the same
SLOCC-family as the W4 state. In chapter 7 (see also [127].), a detailed theoretical
and experimental analysis is presented.
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� The state |Ψ(4) 〉
Another Dicke state, which is however not symmetric under permutation of all
particles is the state |Ψ(4) 〉. It has zero total spin and contains the same terms as
the Dicke state but with a different weighting:

Ψ(4) = 1√
3

( |HHV V 〉+ |V V HH 〉)
− 1√

12
( |HV HV 〉+ |HV V H 〉+ |V HHV 〉+ |V HV H 〉) (3.25)

it does not change under operations of the type:

(LU ⊗ LU ⊗ LU ⊗ LU)Ψ(4) = Ψ(4) (3.26)

Therefore this quantum state can be used for decoherence free quantum communi-
cation, which was demonstrated experimentally in [137]. It contains the same terms
like the state D

(2)
4 , but the symmetry S1324 is broken due to the different weightings

and the minus sign. The state was prepared with polarized photons [115, 138]. We
demonstrated an extensive experimental study of the states’ entanglement persis-
tency in [83]. It is ideal for universal 1 → 2 telecloning as shown by [118, 139].
In addition some modified kind of secret sharing was demonstrated experimentally
using this state [140, 141].

As we have seen, all of these quantum states belong to the first SLOCC-family, Gabcd,
according to the classification introduced in section 3.1.2, apart from the state |W4 〉.
This can easily be seen from their maximal local entropy. The explicit transformations are
summarized in appendix B.2. Apart from this, the cluster and GHZ4 states constitute
the representatives of the graph states, and the states |W4 〉 and |D(2)

4 〉 represent the
entangled symmetric Dicke states. For further comparison, the geometric measures of
entanglement of all the states that were presented here are summarized in table 3.2.3. In
the following, we will take a closer look at some of the properties that are going to be
studied here.

4 qubit states 3 qubit states
States |D(2)

4 〉 |W4 〉 |C4 〉 |GHZ4 〉 |Ψ(4) 〉 |GHZ3 〉 |W3 〉 |G3 〉
EG 0.625 0.578 0.750 0.500 0.667 0.500 0.556 0.250

Table 3.1: Geometric measure of entanglement of several genuinely three- and four- qubit
entangled states. The sources for these values are summarized in appendix A.

3.3 Properties of entangled states

To identify the family and SLOCC-family a quantum state belongs to, and how strongly
it is entangled with respect to a certain entanglement measure, are important steps in the
characterization of the state. A description is, however, never complete without a look at
the properties exhibited by the object being studied. Therefore, this section is devoted to
some properties of entangled states which will be explored in the experimental part.
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3 Classifications of Multipartite Entanglement

Here, we are mainly interested in properties that are easily accessible experimentally,
i.e., that can be studied without complete knowledge of the quantum state. As experi-
mentally prepared states are never perfect and in general mixed, a demonstration of how
well certain properties are reproduced are better indicators of how well a quantum state
was reproduced, than e.g. simply giving a value for the fidelity.

Several properties of quantum states are specific to only one or a few examples, like
the symmetry under local unitary transformations in |Ψ(4) 〉. These special issues will be
discussed in detail for the two states of interest, |C4 〉 and |D(2)

4 〉, in the corresponding
chapters. Apart from this, one can also identify some properties that are in general a good
subject of investigation and that, at the same time, fulfill our demand of easy accessibility.
Here, we study three properties of general interest: permutation symmetry, entanglement
persistency and connectedness.

3.3.1 Permutation symmetry

Interestingly, all of the discussed four-photon quantum states exhibit some kind of per-
mutation symmetry. They can be put into two groups using the description introduced in
section 2.2.3 (page 12). The states |D(2)

4 〉, |W4 〉 and |GHZ4 〉 are symmetric under all
permutations of qubits and therefore eigenstates of all operators in the symmetry group
generated by the swap operators S2134, S1324 and S1243, which has 24 elements (figure 3.4
a). The states |C4 〉, |Ψ4 〉 and |Bell 〉⊗ |Bell 〉 do not fulfill the symmetry S1324. Instead
they follow the permutation group generated by S2134, S3412 and S1243 (eight elements,
figure 3.4 b). Thus, permutation symmetry is a characteristic of many strongly entangled
states, even though it is not an entanglement criterion by itself as separable symmet-
ric states exist (e.g. |HHHH 〉). This observation is supported by the arguments that
were discussed in the context of the witnesses for symmetric Dicke states (section 3.2.2).
There, we saw that the violation of the bounds on 〈J2〉 − 〈J2

z 〉 (equation 3.17) for bisep-
arable states is related to a combination of high local entropy and complete permutation
symmetry, leading to a separability criterion.

b)a)

Figure 3.4: Representation of the two symmetry groups encountered in the presented
examples of four-qubit entangled states. Straight lines means exchange of qubits, dashed
lines exchange of qubit pairs. By concatenation either all possible permutations (a) or a
permutation subgroup (b) is formed.

Permutation symmetry can therefore be considered as a property worth being studied
in more detail. In the following, the expectation value of the permutation operator is used
to study the symmetry of an experimentally observed state. This approach is efficient, as
it does not require complete knowledge about the state, but only few measurements6. To

6This issue is addressed in more detail in section 4.3.
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3.3 Properties of entangled states

illustrate its interpretation, it is contrasted to another one that is, however, not advanta-
geous experimentally.

We chose to analyze the symmetry of a pure quantum state |ψ 〉 by studying its overlap
with its permuted counterpart S |ψ 〉:

〈S〉ψ = 〈ψ | S |ψ 〉. (3.27)

Thus, the result is simply the expectation value of the permutation operator S. This
value can vary between +1 for symmetry (e.g. 〈S21〉ψ+ = +1) and −1 for antisymmetry
(e.g. 〈S21〉ψ− = −1), respectively.

One way to generalize this approach to mixed states is to calculate the expectation
value of the swap operator for mixed states ρ which is simply given by:

〈S〉ρ = Tr [ Sρ] =
∑

i

pi〈ψi | S |ψi 〉, (3.28)

for any decomposition of ρ into pure states |ψi 〉. Here, we can directly see that the re-
sulting value is the weighted average over the symmetries (i.e., swap operator expectation
values) of the pure states. The resulting value is closely related to the probability to
project the state ρ onto the symmetric subspace. This can be seen by using the relation
given in equation 2.33:

Tr [ ZρZ] = Tr [ Z Zρ] = Tr [ Zρ] =

〈Z〉ρ = Tr
[

11+ S
2 ρ

]
= 1

2 (1 + 〈S〉ρ) (3.29)

It is important to note that 〈S〉ρ is not the overlap of the mixed state with its permuted
counterpart! It is a stricter criterion on permutation symmetry, because not only the whole
mixed state needs to be symmetric under permutations, but also all of the pure states it
consists of, to reach the maximal value 1. The overlap for mixed states would constitute
another route to quantify symmetry of mixed states by using the corresponding definition
of fidelity, which was introduced in equation 2.18. Then, the overlap between a mixed
state and its permuted counterpart is given by:

fPψ = Tr

[√√
ρS†P ρ SP

√
ρ

]
(3.30)

where P is a certain permutation of the qubits. While, on the one hand, this value is the
overlap of a mixed state with its permuted counterpart it does, on the other hand, not
show any difference between symmetry and antisymmetry. To exemplify this, we calculate
both quantities for white noise of two qubits:

fρwn = Tr




√√
11⊗ 11

4
S

11⊗ 11
4

S

√
11⊗ 11

4


 =

Tr [11⊗ 11]
4

= 1 (3.31)

〈S〉ρwn = r

(
S

11⊗ 11
4

)
=

1
2
(〈S〉ψ+ + 〈S〉φ+ + 〈S〉φ− − 〈S〉ψ−) =

1
2

(3.32)

Thus, even though white noise is still white noise after a permutation of qubits (fρwn = 1),
it cannot be expressed as a mixture of symmetric pure states and therefore is not consid-
ered completely symmetrical according to the stricter criterion (〈S〉ρwn = 1/2 < 1). This
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3 Classifications of Multipartite Entanglement

is due to the fact that white noise always has anticorrelated components. An example of
a mixed separable state that is symmetric is the state:

ρsym = 1/2(|HH 〉〈HH | + |V V 〉〈V V |) with fρsym = 〈S〉ρsym = 1 (3.33)

Another example is the comparison of the state |W3 〉 with ρfool. The latter was
shortly defined in section 3.1.1 and is explained in more detail in [88] as an example
of a state that can experimentally easily be confused with |W3 〉 despite the fact that
ρfool is only bipartite entangled. The W3 state is indeed symmetric under all of the six
permutations of three qubits generated by S213 and S132. As it is also a pure state
the two values for symmetry are equal fW3 = 〈S〉W3 = 1 for any permutation S in the
mentioned group. The state ρfool is symmetric in sense of the second criterion f213

ρfool
=

f132
ρfool

= 1. It is not, however, in the sense of the expectation value of the swap operator
〈S213〉ρfool

= 〈S132〉ρfool
= 〈S321〉ρfool

= 1
2 , because the pure states in the decomposition

are not symmetric. This example also shows that in certain cases studying the symmetry
is even a useful tool for state discrimination.

In summary, two ways to study symmetry in a state were presented. One is based on
the pure state decomposition of mixed quantum states, the other on the symmetry of the
mixed states themselves. Which of the criteria is to be used, depends on the information
that one wants to gather. The latter analysis reflects how much the state is changed when
two qubits are exchanged. The first one is, however, stricter, as it requires symmetry of
all pure states in the state’s decomposition. Therefore, it is a lower bound on the value for
mixed state symmetry. Further, it is better suited for experimental evaluation, because
it does not require complete knowledge about the state.

3.3.2 Entanglement persistency

When studying entanglement persistency [81, 83], one is interested in how much and what
kind of entanglement remains from a quantum state after one or several photons are lost.
Several remarks on entanglement persistency have already been made in the presentation
of different types of quantum states. For example, the entanglement in a GHZ state,
known to exhibit strong correlations, is already destroyed after loss of only one particle.
It is a well-known fact, that W states are much more robust in this respect (e.g. [23]). As
it turns out, there exist also many other multipartite entangled states that still exhibit a
significant amount of entanglement even after the loss of several particles [40].

As pointed out in [23, 82, 83], especially the analysis of the bipartite residual states
is fruitful: On the one hand, bipartite entanglement is understood much better than
multipartite and thus enables an alternative route for the characterization of multipartite
entanglement. On the other hand, studying the bipartite subsystem of a state requires
less effort than the description of the whole state. Quantum state tomography on a
bipartite subsystem of the investigated quantum states opens, with a small number of
measurements, the possibility to apply the entire theoretical framework introduced in
chapter 1. In particular, the concurrence and negativity of the reduced quantum states
can be used to quantify the entanglement in the residual state.

In addition, the study of entanglement persistency opens another point of view on
multiparty quantum communication schemes. There, some parties might not want to
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3.3 Properties of entangled states

Figure 3.5: Two four-party quantum communication schemes that are related to persis-
tency and connectedness, respectively. The solid arrows represent the quantum channels
distributing the quantum state to four parties. Dashed lines correspond to classical com-
munication channels. In quantum telecloning (a), three receiving parties obtain a clone of
the input state. The sender needs to broadcast the result of the Bell state measurement
allowing them to perform a corresponding unitary transformation on their qubit. In open
destination teleportation (b) the parties cooperate to send a perfect copy of the state to
one of the three receivers, here exemplarily Jupiter. The measurement results on Mars and
Saturn and the Bell state measurement on Earth allow to (probabilistically) obtain the
teleported state on Jupiter.

cooperate, or the information about particles is not accessible for other reasons. Both
situations can be described by particle loss. Even more interesting is the fact that the
applicability of a quantum state for quantum telecloning (QTC) [118] can be derived from
this property. Somewhat surprisingly, none of the entanglement measures is needed to do
so, but the maximal singlet fraction FMSF (equation 2.37) of the bipartite residual state.

The reason is that one can calculate the teleportation fidelity when using a particular
bipartite quantum state out of FMSF , as we as have seen in section 2.2.4. Now, consider a
configuration similar to the one for teleportation, only with four parties (figure 3.5). Let
us say Earth, Mars, Saturn and Jupiter share a certain quantum state as resource. Again,
Earth has some input state |φ 〉 that is supposed to be sent to the other three parties.
The bipartite resource that Earth shares with one other party is exactly the state after
tracing out the other two qubits (Saturn and Jupiter). The corresponding teleportation
fidelity achieved between Earth and Mars can then be calculated from FMSF of their
shared residual state. Because this is valid for all of the pairs that Earth shares with
the other parties, one Bell state measurement is used for the transfer to all of the other
planets at the same time. Classical transfer of the measurement outcome (dashed lines
in figure 3.5 a) to Mars, Saturn and Jupiter allows them to reconstruct the states with
a quality that corresponds to the entanglement in the pairs, i.e. to the entanglement
persistency. Note, that this quality is never perfect, as the three clones are forbidden to
be perfect copies of the input states by the No-Cloning theorem [142].

It turns out that the pure state with the highest FMSF in two qubit pairs is the state
Ψ(4) [83]. It allows telecloning from one sender to two receivers with the best achievable
theoretical fidelity of 5/6. Indeed, we also performed an experiment where a fifth photon
was used as input qubit [140].
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3 Classifications of Multipartite Entanglement

It was already mentioned that symmetric Dicke states are very persistent against loss of
photons. Due to their permutation symmetry, they share the same entanglement between
all pairs of qubits in the state. The W states exhibit the highest amount of entanglement
in the pairs according to the concurrence. In contrast, concerning the maximal singlet
fraction the state |D(2)

4 〉 reaches the maximally achievable value [143]. Thus, it is optimal
for telecloning from one sender to three receivers, with an average7 telecloning fidelity
of 7/9. In case of the state D

(2)
4 the teleportation of input states of the form φcov =

1√
2
( |H 〉+eiφ |V 〉) has a higher fidelity of 5/6. This is the limit for the so-called covariant

telecloning fidelity from one sender to three receivers [144].

3.3.3 Connectedness

Entanglement persistency concerned the entanglement in a state after tracing out qubits,
corresponding to the case when the other parties do not cooperate or when particles are
lost. When all parties do cooperate, more entanglement in the subsets of states can be
obtained (at least probabilistically), because we can chose a basis for the measurement on
some of the particles and the residual state depends on the measurement outcome. We
study the connectedness of the state by looking at the entanglement between the residual
qubits conditioned on the outcomes of projective measurements on the other qubits.

Connectedness was originally discussed in relation with cluster states in [81]. There, it
means the maximal number of projective measurements that can be performed such that
the residual state is still entangled with certainty. In order to use it for all of the states
mentioned here, we need to extend the meaning, i.e., we do not require certainty. Then
two values are interesting: The maximal quality of the residual states after the projective
measurements and their probability of occurrence. As we have seen that different types
of multipartite entanglement exist, it is for multipartite reduced states also important
to ask what kind of entanglement can be achieved. Thus, a relation between types of
multipartite entanglement of a different number of qubits is revealed. An example for
these relations was discussed in section 3.2.1: Graph states are transferred to other graph
states with a reduced number of qubits after projective measurements.

Again, the investigation of the bipartite subsets gives an insight in possible applications.
Consider the configuration for quantum telecloning. Instead of the distribution of three
quantum clones to the receiving parties, the task is now to send a perfect copy of the input
state to one receiver (Mars, Jupiter or Saturn) after the quantum resource has already
been distributed. Thus, the protocol is in principle a teleportation, but the destination
of the sent qubit can be chosen by the cooperating receivers. In other words, the shared
quantum state needs to exhibit connectedness such that by cooperation of the parties, a
perfect Bell state can be obtained between Earth and the receiving party, e.g. Jupiter,
with a certain probability. To achieve this, again Earth needs to send the result of the
Bell state measurement to Jupiter which allows the final transformation of the received
qubit. Further, Mars and Saturn need to send their measurement result to Jupiter, as
well, allowing the decision whether the protocol worked. This protocol is called open
destination teleportation (ODT) and was introduced and demonstrated experimentally
for the five-qubit GHZ state by Zhao and coworkers [96].

7The average is taken over all possible input states.
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As it turns out, again the state |D(2)
4 〉 is suited for this task. A projective measurement

of two qubits in the same basis leads to a Bell state in the other pair, if the measurement
results are orthogonal. The protocol works with a probability of 2/3. In addition, due to
the permutation symmetry of the state, every party can take the role of the sender. Note
further, that even the decision whether the quantum information should be distributed
between the receivers or transferred to one receiver only (QTC or ODT) can be made
after the Bell state analysis, i.e., after the state was ”sent”.

3.4 Summary

In conclusion, many different types of entanglement can be identified for multiqubit quan-
tum systems. While several quantum states are known to have special properties or to
be useful for applications, it is a natural goal to find systematic ways to classify and to
describe the different kinds of entanglement.

A very abstract way to gain insight into the structure of multipartite entanglement is
to use the equivalence of quantum states under SLOCC, i.e. probabilistic local operations
that can be performed without quantum channels. This leads to classes of quantum
states that are suitable for the same type of communication tasks [23, 24, 89]. This way,
a structure can be identified in the variety of different states. For four qubits, these
entanglement classes are split into nine superordinate families. The states investigated in
this theses, |C4 〉 and |D(2)

4 〉, belong to the same SLOCC-family Gabcd [24].
A second approach is to focus on the investigation of families of quantum states with

similar structure. In contrast to the SLOCC classification, one does then not cover all en-
tangled states of a certain number of qubits. Instead, a family contains states of different
qubit numbers, thereby showing relations between entangled states of different size. One
family that is relevant in the following are the graph states, which have two four-qubit rep-
resentatives: The well-known GHZ4 state, and the cluster state, which has been observed
only recently in the context of this work (chapter 6 and [135]) and by Walther et al. [35].
The second family are the the symmetric Dicke states, which also contain two entangled
four-qubit states: The state |W4 〉, which also has already received some attention, and
the state D

(2)
4 , whose first experimental observation and analysis is presented in chapter 7

and [127].
Further, quantum states are characterized by their specific properties. To study these

properties is an inevitable part of understanding the various types of entanglement. The
states |C4 〉 and |D(2)

4 〉 exhibit different permutation symmetries. With the method that
we presented here it will be possible to efficiently study this property in the experimentally
observed quantum states. The investigation of entanglement persistency and connected-
ness concern the entanglement in subsets of particles of a quantum state. It allows a
deeper insight in the entanglement structure of the states and is particularly relevant
for judging the applicability of quantum states in multiparty quantum communication.
They describe the potential use of the state in situations were, for example, particles are
lost. Furthermore, they can be used to concretely quantify the quality achieved in quan-
tum telecloning and open destination teleportation protocols, when the state is used as
quantum resource.
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4 Entanglement Engineering with Polarized
Photons

Experiments on multipartite entanglement started in the end of the 1990’s in the group
of Anton Zeilinger with polarization entangled photons. Meanwhile, many other physical
systems were brought to a stage where entanglement can be studied, most notably trapped
ions. Here, we use the ”old” approach based on spontaneous parametric down conversion
(SPDC) and linear optics to observe photonic quantum states. An advantage of this
approach is that we can already use the non-classicality of the creation process of the
photons as a starting point for their further processing. While the necessary interaction
of the particles is basically a difficult task for photons, the use of linear optics together with
conditional detection has proved as a flexible and successful method to obtain different
types of entangled quantum states. Today, more different kinds of entanglement have been
observed in multiphoton experiments compared to any other way of implementation.

In the following, the different stages of this type of experiment will be presented. We
start with the creation of photons via SPDC. The process itself and the experimental
implementation is described shortly. Further, tools for linear optics quantum processing
based on birefringent crystals and beam splitters are explained followed by the detection
process .

Finally, the further processing of the obtained data will be outlined. The evaluation of
the observed states’ correlations, reconstruction of density matrices and determination of
characteristic values that will be used for the state analysis of the last three chapters are
presented. Additionally, quantum process tomography will be introduced for later use as
a tool to characterize our controlled phase gate.

4.1 Generation of photons

4.1.1 Spontaneous parametric down conversion

When an electromagnetic field interacts with a dielectric medium it induces electric
dipole moments. The macroscopic sum thereof results in a polarization ~P that is, for
an anisotropic crystal, related to the electromagnetic field ~E via [145]:

Pi = ε0


∑

j

χ
(1)
ij Ej +

∑

j,k

χ
(2)
ijkEjEk +

∑

j,k,l

χ
(3)
ijklEjEkEl + ...


 (4.1)

where ε0 is the permittivity for a vacuum, χ are the nonlinear susceptibilities and the
indices i, j, k, l ∈ {1, 2, 3}.

For a strong pump field, the second order contribution cannot be neglected and two
new electromagnetic fields are created. In second quantization this corresponds to the
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spontaneous decay of a pump photon with energy h̄ωp and momentum h̄~kp into two so-
called signal and idler photons with energies h̄ωs, h̄ωi and momentum h̄~ks, h̄~ki. Due to
energy and momentum conservation we have:

ωp = ωi + ωs (4.2)
~kp = ~ki + ~ks (4.3)

For a more detailed quantum mechanical description of the process, refer to e.g. [146].
When a birefringent crystal is pumped by an extraordinarily polarized beam, there are

two different types of SPDC:

Type I: The signal and idler photons are ordinarily polarized.

Type II: Signal and idler photons are orthogonally polarized, i.e. one ordinarily, the other
extraordinarily.

Due to energy and momentum conservation the created photons are strongly correlated
in these two degrees of freedom. In our experiments, the photons are distinguished by
spatial mode and polarization, therefore we seek to achieve indistinguishability in all other
degrees of freedom. Thus, we select only the degenerate SPDC emission, where the created
photons have half the frequency of the pump beam.

We want to take advantage of the orthogonality of the polarizations of the signal and
idler photons and use therefore SPDC of type II. The momentum conservation ensures
that the photons are always emitted symmetrically around the pump beam. As they have
different polarizations, the signal and the idler photon are emitted onto two emission cones,
as can be seen in figure 4.1. The angle between these cones is varied by tilting the optical
axes of the crystal relative to the pump beam. For the experiments presented in this
thesis two configurations have been used. In figure 4.1 a) the most common configuration
for the creation of polarization entangled photons is shown [147]. The two cones intersect
and it is not possible to know which photon is emitted into which crossing mode. In
figure 4.1 b) a collinear configuration is shown. The cones only touch in a mode collinear
with the pump beam and the created photon pair is collected in one spatial mode, only.
These two configurations will be studied in a little more detail in the following.

Non Collinear Configuration

For the non-collinear configuration, entangled photon pairs can be emitted onto two spatial
modes a and b, given by the directions where the two emission cones overlap (figure 4.1 a).
If, like in our case (see section 4.1.2), intense and short pump pulses are applied, then
multiple emission events during a single pulse lead to the following state [148, 149]:

Z e−ic(a†V b†H+a†Hb†V )|0〉 =

Z

(
ic(a†V b†H + a†Hb†V )− c2

2
(a†V b†H + a†Hb†V )2 + ...

)
|0〉 (4.4)

where Z is a normalization constant, c depends on parameters of the crystal and is propor-
tional to the pump beam intensity1 and a†V ,b†H ,a†H and b†V represent the photon creation
operators for the modes a and b.

1Only valid for c ¿ 1
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4.1 Generation of photons

Figure 4.1: Two configurations to create photons with SPDC of type II. In the non-
collinear configuration (a) the two characteristic emission cones intersect and entangled
photon pairs are emitted onto the crossing modes. The collinear configuration (b) uses
touching emission cones to obtain photon pairs of orthogonal polarization to be emitted
into the same spatial mode.

The first order term is simply the emission of the entangled photon pairs into modes a
and b. Thus with the probability 2Z2c2 a Bell state is created:

|ψ+ 〉 =
1√
2
( |HaVb 〉+ |HaVb 〉). (4.5)

The second order term corresponds to the emission of four photons resulting in the fol-
lowing superposition of photon number states created with the probability 3Z2c4:

1√
3
(|2Ha, 2Vb〉+ |2Va, 2Hb〉+ |1Ha, 1Va, 1Hb, 1Vb〉). (4.6)

Note that the terms where equal polarizations are in the same mode have a higher ampli-
tude than one would expect from a simple two-pair emission. This second order emission
was already used to observe the three photon W3 state [88, 90, 91] and the four photon
entangled state Ψ(4) [115, 138]. For the observation of the Cluster state in chapter 6 we
use, however, twice the first order emission and the four photon emission enters only as
an unwanted contribution to noise.

Collinear Configuration

The emission of the collinear configuration can be treated in a similar way. The only
difference is that modes a and b collapse to one single spatial mode:

Z e−i
√

2c(a†Ha†V )|0〉 =

Z

(
i
√

2c(a†Ha†V )− (
√

2c)2

2
(a†Ha†V )2 − i

(
√

2c)3

6
(a†Ha†V )3 + ...

)
|0〉 (4.7)

The three terms correspond to emission of the states |1H, 1V 〉a, |2H, 2V 〉a and |3H, 3V 〉a
into one mode with the probabilities 2Z2c2, 4Z2c4 and 8Z2c6, respectively2. In this type

2The parameters were chosen such that for the same value of c the same probability of a pair emission
in collinear and non collinear configuration is obtained.
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of source, the probability for a multiple emission is even stronger compared to the non
collinear case, which is an advantage for the count rates obtained in chapter 7. The
disadvantage is, however, that there is also a stronger contribution of the third order
emission, which adds some additional mixed state in the experiment.

4.1.2 Experimental implementation

As we have seen, we can use the down conversion process to probabilistically create
several photons. To do so it is necessary to use an extremely intense pump beam, as
the probability to create four photons is proportional to the square of the intensity of
the pump beam. Furthermore the photons need to be indistinguishable, independent
of whether they are created in two independent sources or in one process. This means
that their time of creation or detection needs to be much shorter than their coherence
time. Both, a high intensity and short creation time window can be achieved by using
a femtosecond pulsed laser system, guaranteeing a high peak intensity and a very short
time window for the photons to be created. Here I will shortly describe our realization of
such a pump laser system.

To create femtosecond UV pulses at a wavelength of 390 nm we frequency-double the
output of a mode-locked Ti:sapphire laser. This combination of a Millenia3 Nd:Yag laser
pumping a Tsunami3 Ti:Sa with 10 W cw pump power provides 82 MHz pulsed light
(pulse length ≈130 fs) with an average power of 2.1W at a wavelength of 780 nm. A
3mm long Lithium-Borate crystal (LBO) is used for second harmonic generation (SHG)
creating between 600 and 800 mW UV-pulses at 390 nm. Mirrors of high reflectivity for
UV and high transmittivity for IR serve to separate the created UV beam from the
residual IR light. Cylindric lenses serve to focus the pump beam to a circular spot onto
the down conversion crystal, a 2 mm β-Barium Borate crystal (BBO) which is cut for
collinear second harmonic generation (SHG). For the non-collinear down conversion the
focus has a diameter of 200µm, for the collinear down conversion a spot size of 100µm
was experimentally verified to be preferable. In the latter case, the UV pump beam is
filtered from the down conversion emission by two mirrors with high transmission at IR
and high reflection at UV under 0 ◦. Walk-off effects due to birefringence are compensated
by a combination of a half wave plate, switching horizontal and vertical polarization, and
a 1 mm BBO crystal. Coupling the photons into single mode fibers exactly defines the
spatial mode desired to collect from the down conversion emission [150]. The spectral
selection is achieved with a narrow bandwidth interference filters (usually ∆λ = 3nm if
not mentioned otherwise) that are located at convenient positions dependent on the setup.

The disadvantage of the femtosecond pulsed pump beam is the, in comparison with a
cw pump beam, broad spectrum (∆λp,UV ≈ 1.2 nm). It leads to a broader spectrum of
the down conversion emission, because the emitted light into the collected spatial modes
also stems from a decay of photons that are not at the central wavelength. Further, the
probability to detect both photons of an emitted pair is reduced, as we will see.

Usually, the coincidence to single ratio is used to quantify the probability for a created
photon to be detected.

ηa =
Cab

Ca
, (4.8)

3Spectra Physics
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where Cab and Ca denote the probability of detecting photons in modes a and b simul-
taneously and a detection in mode a, respectively. As the photons are always created
in pairs we know that each single photon detection indicates a lost partner qubit, which
is why η corresponds to the total detection efficiency, i.e. the probability that a created
photon is really detected. As argued before, emission stems also from pump photons that
are slightly off the central wavelength, therefore it is important to remember that spectral
filtering often filters one photon of a pair that is emitted from a photon slightly off the
central wavelength, while the other is transmitted. This decreases the coincidence to sin-
gle ratio strongly. An additional effect is that the bandwidth of the emissions is slightly
different for the two polarizations, therefore also η is polarization dependent.

We can also estimate the value of c in equation 4.1.1 and equation 4.7 from the single
and coincidence detection. The probability for a coincidence is the probability for creation
of a photon pair ≈ 2c2 (for Z ≈ 1) times the probability that both photons are detected
ηa and ηb:

Kab = 2c2ηaηb ⇒ 2c2 =
Kab

SaSb
(4.9)

The probability for the pair creation and the efficiency of detecting the photons are basic
parameters in the description of our photon sources and valuable for estimating, for ex-
ample, the admixed noise due to higher order emissions. Thus, I conclude this section by
summarizing typical values of these parameters and the corresponding coincidence count
rate estimated from the detection rates with both configurations using 3 nm bandwidth
filtering. Note that without further explanation of details the additional factors enter-
ing due to splitting of the photons from the collinear configuration have been taken into
account.

non collinear collinear
Creation Probability 2c2 0.008 0.034
Total Efficiency η 0.09 0.1
Coincidences [1/ s] 5500 28000

Table 4.1: Approximate values of the parameters describing the two configurations of
SPDC used in our experiments.

4.2 Processing photons

In order to observe a certain quantum state, the photons need to be processed further,
as the source of photons does in general not directly create the desired state. Due to the
fact that interactions of photons rely on extremely inefficient nonlinear processes, other
more efficient methods to control the states need to be found. Such methods rely on linear
optics and interferometry.

In a celebrated work, Knill, Laflamme and Milburn showed that universal linear optics
quantum computation is indeed possible [151], i.e. any quantum operation can be realized
with linear optics networks. Thus, one can also create an arbitrary quantum state with
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single photon sources and linear optics. At the current stage, even small networks require
practically an unrealistic amount of resources. Even though combinations of their ideas
with the one-way quantum computer approach require much less resources [34, 152, 153],
some further research is necessary until it is possible to create and control the large amount
of photons needed, even for small experiments.

Here, like in many other experiments4, we rely on the technique of conditional detec-
tion. A linear optics setup and interferometric methods are used to observe a quantum
state under the condition of detecting one photon in each of four specified output modes.
Basically, the nonlinearity is introduced by a projection of the complete photonic state
onto the part of the state, where one photon is in each spatial mode – in the experiment
this projection is realized by selecting the four-fold coincidences. The disadvantage is that
the observed entangled state cannot be used for further processing, if the projection onto
this subspace cannot be guaranteed. On the other hand, multiparty communication tasks
rely on the distribution of the quantum state onto several parties, thus it is ensured that
the photons do not need to interact anymore.

4.2.1 Wave plates

Unitary transformations of single qubits can easily (and without conditional detection)
be implemented with birefringent crystals. The most important ones are half and quarter
wave plates that introduce a phase shift of π and π/2 respectively, between the linear
polarizations parallel to the fast and slow axis of the crystal. This introduces the trans-
formations Uπ

θ,0 = σ̂θ,0 for the HWP and U
π/2
θ,0 = (i · 11 + σ̂θ,0)/

√
2 for the QWP5. Here, θ

is the angle between the rotation axis and the horizontal axis. In our experiments we use
zero order HWP and QWP6 in order to have little error on the introduced phase shift.

Another important tool are birefringent elements that shift the phase between the
horizontal and vertical polarizations, represented by the operation Uω

0,φ = i cos(ω/2)11 +
sin(ω/2)σ̂z. Here, the fast and slow axes are aligned along horizontal and vertical polariza-
tions, and the thickness of the plate, which determines the phase ω, is changed by rotation
around the vertical axis. Thus, no zero order plates can be used. In our experiments we
use for each compensation a pair of custom made Yttrium-Vanadate crystals (Y V O4) of
200µm thickness7. They were chosen due to their strong birefringence at 780 nm (for
more detail see [154]). The pair configuration allows to compensate dispersion effects that
depolarize the photons strongly due to their comparably broad band width of about 3 nm.
Here, we use the Y V O4 crystals to compensate phase shifts that are usually introduced
by imperfect beam splitters.

4See e.g. the experiments cited in context of state analysis in the overview of four-qubit states (sec-
tion 3.2.3) and implementations of quantum gates in the introduction to the CP experiment (chap-
ter 5)

5The upper index of Uω
θ,0 corresponds the phase shift ω introduced by arbitrary waveplates. For definitions

see section 2.1.1.
6Zero order, optically contacted, CeNing Optics/FOCtek
7FOKtek
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4.2 Processing photons

Figure 4.2: The notation of the in- and output modes of a general beam splitter are shown
in a). In b) the polarization analysis as used in all of the presented experiments is depicted.
A half and a quarter wave plate (HWP and QWP) serve to choose the basis of analysis. A
polarizing beam splitter (PBS) separates photons with two corresponding eigenstates for
detection in Silicon avalanche photo diodes (APD).

4.2.2 Beam splitters

The basic elements for making joint operations on photon pairs are beam splitters (they
are, however, also useful for some single qubit operation). An ideal general beam split-
ter8 introduces the following transformations, where the creation operators are named
according to the modes in figure 4.2 a):

a†H → 1√
2

(
TH · a′†H + iRH · b′†H

)
(4.10)

b†H → 1√
2

(
TH · b′†H + iRH · a′†H

)
(4.11)

a†V → 1√
2

(
TV · a′†V + iRV · b′†V

)
(4.12)

b†V → 1√
2

(
TV · b′†V + iRV · b′†V

)
, (4.13)

where TH (RH) is the transmission (reflection) amplitude of the horizontal polarization
and analogously for vertical polarizations. The phase i for the reflected modes is re-
sponsible for a negative phase between the cases where photons from both input modes
are transmitted or reflected. Without this, the transformation is not unitary (see article
[155]). One imperfection of real beam splitters is that they introduce an additional phase
shift between horizontal and vertical polarization in each mode. We use the phase shifters
introduced before to compensate this effect (see setup for Dicke state figure 7.1 on page
96).

Beam splitters can be designed with basically any splitting ratio, there are however
some special cases. Symmetric or 50/50 beam splitters (SBS) exhibit equal values for the
parameters |TH |2 = |TV |2 = |RH |2 = |RV |2 = 1/2.

Usually, the commercially available beam splitters are not perfect and exhibit some
asymmetry between the polarizations or the spatial modes (or both). They can, how-
ever, usually be aligned to behave as polarization independent beam splitters (BS) that

8In the notation of the second quantization.
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4 Entanglement Engineering with Polarized Photons

behave equally for both polarizations, but with different transmission and reflection am-
plitudes. After aligning the beam splitters9 for polarization independence they take values
of |TH |2 = |TV |2 ≈ 0.6, |TV |2 = |RV |2 ≈ 0.4. In our experiment this influences, as we will
see, only the efficiency, not the quality of the state.

Polarizing beam splitters (PBS) are specified by zero reflectivity of horizontal and zero
transmittivity of vertical polarization |TH |2 = |RV |2 = 1, |TV |2 = |RH |2 = 0. Again
the experimentally used beam splitters are not perfect. As we will see, we use PBSs for
polarization analysis, were mainly |TV |2 = |RH |2 = 0 is important. Again by alignment,
we reach with our PBSs10 a very good value of approximately |TV |2 = |RH |2 ≈ 0.002.

The only other kind of beam splitter that is relevant here is used in the controlled phase
gate (chapter 5) and will simply be called polarization dependent beam splitter (PDBS).
It’s splitting ratios are in the ideal case |TH |2 = 1, |RH |2 = 0, |TV |2 = 1

3 , |RV |2 = 2
3 .

A detailed characterization of our custom made11 beam splitters can be found in the
Diploma thesis by Ulrich Weber [156].

If one relies on conditional detection, there are several tasks beams splitters can be used
for:

� Attenuation of one polarization. Polarization dependent beam splitters can be used
to attenuate one polarization under the condition that the transmitted photon is
detected. This is a non-unitary transformation and corresponds, together with the
conditional detection, to a POVM measurement [157].

� Splitting of photons from one into two modes. Two photons that are incident on
a polarization independent BS split up probabilistically. As conditional detection
discards the other cases, the BS effectively works as a lossy photon splitter, where
the smallest losses are achieved for a symmetric BS.

� Via second order interference (HOM-type, see [158]) the overlap of photons from
different input modes allows the implementation of quantum gates and Bell state
analysis (see e.g. [159–161]). The implementation of a controlled phase gate with
this technique is demonstrated in detail in chapter 5.

� Polarization dependent beam splitters can in combination with half- and quarter
wave plates, be used for polarization analysis, as demonstrated in figure 4.2 b). The
measurement basis to be analyzed is turned to the Z axes of the Bloch sphere 12 and
’clicks’ in the output modes of the PBS indicate the detection of one or the other
eigenstate.

In all of the experiments presented here the configuration shown in figure 4.2 b) is
used for the analysis of each photon. In order to optimize the analysis of a state the
wave plates for the choice of the basis are motorized and driven according to a computer
program. This allows to frequently change the setting automatically (which is usually
done in intervals of 10 minutes). Thus all measurement settings are a time average of

9LINOS
10Newport
11EXPLA, former EKSMA
12From the waveplate transformations it is easy to see that this is possible for any axis.
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4.3 From clicks to density matrices

the whole measurement period. Further, this allows to monitor the behavior of the setup
during the measurement process.

Finally, the photon in each mode is detected in one of the two outputs of the polarization
analysis in the respective spatial mode. Multimode fibers guide the photons to passively
quenched silicon avalanche photodiodes that are used in Geiger mode for single photon
detection (APD13). No resolution of the photon number is possible. The signals of up to
eight detectors are fed to an ultrafast coincidence logic [162]. This eight bit signal leads
to 255 possible detection events which are triggered each time at least one of the detectors
’clicks’. A histogram of these detection events is stored for later evaluation.

4.3 From clicks to density matrices

So far, the creation of photons and their processing with the goal to detect a certain state
was discussed. The last section of this chapter is devoted to linking the output of the
experimental setup, which are basically detector clicks, with the theoretical framework
that has been developed in the first two chapters. The calculation of correlations and
linear functions thereof will be shown. Further, the efficient derivation of a complete den-
sity matrix with our detection scheme and how non-linear dependences, i.e. entanglement
measures, are found is discussed. Finally, for the purpose of analyzing the experimen-
tal quantum gate that is presented in the next chapter, the principles for a complete
reconstruction of a non-trace preserving quantum process will be shown.

4.3.1 Correlation measurements

The raw data obtained in a measurement consists of the number of coincident or single
clicks of detectors sampled over a certain time period. As the experiments rely on con-
ditional detection, we are only interested in the detection of coincident events between
the four output modes m ∈ {a, b, c, d}. In each of these modes there are two detectors,
whose ’clicks’ indicate a detection of one of the two eigenstates ebm

im
, where im ∈ {0, 1}

(with 0 for the state with the positive and 1 for the negative eigenvalue) of the chosen
measurement basis bm. In most of the cases bm ∈ {X, Y, Z} = {1, 2, 3}. We denote the
detected number of clicks by Cba,bb,bc,bd

ia,ib,ic,id
. One advantage of using a polarization analysis

where both eigenstates are detected in each mode is that for one measurement setting
~B = {ba, bb, bc, bd} the complete number of 16 four-fold coincidences are detected. This
allows to infer the relative frequency of each detection event out of only one measurement
setting, e.g. for detection event C

~B
ia,ib,ic,id

the relative frequency c
~B
ia,ib,ic,id

is given by:

c
~B
ia,ib,ic,id

=
C

~B
ia,ib,ic,id

1∑

i′a,i′b,i
′
c,i′d=0

C
~B
i′a,i′b,i

′
c,i′d

. (4.14)

If a polarization analysis is only based on polarizers, i.e. detects only one eigenstate, then
the total four-fold coincidence count rate has to be inferred from 16 different measurement
13Perkin/Elmer C309025QC-02
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4 Entanglement Engineering with Polarized Photons

settings under the assumption of constant count rates. Thus, longer measurement times
are necessary and at the same stability of the experimental setup is more important.

To further process the data we need to obtain the expectation value of some observ-
able with the experimentally prepared state ρ. For now, let us take the observable Ô ~B

corresponding to a single measurement setting ~B:

K ~B = 〈Ô ~B〉 = Tr
[
Ô ~Bρexp

]
= Tr [(σba ⊗ σbb

⊗ σbc ⊗ σbd
)ρ] . (4.15)

The value K ~B is the four qubit correlation for the chosen measurement setting ~B. One
can easily calculate how this is related to the detection probabilities by expanding the
Pauli matrices into the projectors of the eigenstates σb =|eb

0 〉〈 eb
0 | − |eb

1 〉〈 eb
1 |= P b

0 − P b
1 .

Hence we get:

K ~B =
∑

ia,ib,ic,id=0,1

(
(−1)ia+ib+ic+id · Tr

[
(P ba

ia
⊗ P bb

ib
⊗ P bc

ic
⊗ P bd

id
)ρ

])

=
∑

ia,ib,ic,id=0,1

(
(−1)ia+ib+ic+id · p ~B

ia,ib,ic,id

)
, (4.16)

where p
~B
ia,ib,ic,id

is the probability for a certain detection event to occur. In experiments,
we cannot measure probabilities but just relative frequencies of occurence. Thus, when
we determine the correlation from the measurement, the probabilities p

~B
ia,ib,ic,id

are sub-

stituted by the corresponding relative frequencies c
~B
ia,ib,ic,id

. The error on the correlation
is then calculated via Poissonian counting statistics.

Some correlations also contain the identity 11, which corresponds to tracing over the
corresponding qubit. To rewrite the correlation in terms of projectors we use 11 = P b

0 +P b
1 .

Note that this expression is independent of the basis b. Thus, if several measurements are
available, it may become possible to use more that one measurement for the evaluation of
the correspoding correlation. For example, if we have the choice to substitute the identity
with projectors from all standard basis, then we can use all of them and take the average:

11 =
1
3
(PX

0 + PX
1 + P Y

0 + P Y
1 + PZ

0 + PZ
1 ). (4.17)

By using as much as possible of the available measurement data, errors on the correlations
are reduced. In the following, different ways of evaluation to characterize a quantum state
will be discussed based on the previous considerations.

4.3.2 Quantum state tomography

Methods that are used to obtain a complete density matrix of a quantum state from mea-
sured data are called quantum state tomography. A lot of different ways for quantum state
tomography have been developed (one of the first works was [163]; a variety of methods
are summarized in [164]). From a decomposition of the density matrix into projectors
one can easily express the density matrix in terms of probabilities for detecting a certain
coincidence. Relative frequencies obtained in a measurement are, however, subject to
poissonian counting statistics, giving slight deviations from the real probabilities. There-
fore, taking these errors into account, the deduced density matrices might be consistent
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4.3 From clicks to density matrices

with, but not necessarily directly resulting in a physical density matrix, e.g. one might
find negative eigenvalues. Therefore, several different approaches for fitting a general
physical density matrix to the measured data have been developed. There are, however,
still discussions about the best method (see e.g. a recent publication [165]).

To perform quantum state tomography we need a complete, so-called tomographic, set
of measurement data. James and coworkers [163] discussed tomographic sets, and showed
how to generally deduce the density matrix from measurement data, when a certain tomo-
graphic set is available. In their experiment they used simply a polarizer for polarization
analysis detecting only one eigenstate for each measurement basis and therefore relying
basically on a tomographic set based on the projectors similar to (here exemplarily shown
for the two-qubit case): Pa ⊗ Pb where a, b ∈ {H, V, +, L}. Measurements from three
different conjugate bases for each qubit are necessary (namely X,Y, Z) to determine these
values.

Here, we rely on the detection of both eigenvalues of a measurement basis at the
same time. Still, we need to measure in three conjugate bases to obtain a tomographic
set of data. Thus, we directly register projections on six polarizations for each qubit:
{H,V,+,−, R, L}. This set of data is overcomplete. Yet, as count rates are often low we
do not want to discard the additional information. We can, however choose another tomo-
graphic set to include all measurement data, thereby either reducing measurement times
or errors due to counting statistics. The density operator can, for example, be rewritten
in a decomposition based on the standard bases (i.e., based on{σ̂0 = 11, σ̂x, σ̂y, σ̂z}):

ρ =
1

2N

3∑

{bj}=0

K{bj}
N∏

j=1

σ̂bj
. (4.18)

The coefficients K{bj} are correlations. This can be treated with the formalism in [163]
but relies then on a complicated way to treat the errors, as they become correlated.
Here, we derive a simple expression that allows to rewrite the density matrix as a linear
combination of operators (that substitute the Pauli operators) with the probabilities of
the detection events as coefficients. This allows to use the complete set of data in a very
simple and natural way, giving a direct relation between the measured relative frequencies
and the density operator. The advantage of this approach will also become apparent in
section 4.3.3.

A density matrix ρ can be expressed as a linear combination of Pauli matrices. This
decomposition is rewritten by extracting the correlations with σ̂0 = 11. Here, the derivation
is restricted to the two-qubit case for simplicity and the indices {0, 1, 2, 3} instead of
{11, X, Y, Z} are used:

ρ =
1
4

3∑

k,l=0

Kk,l σ̂k ⊗ σ̂l = (4.19)

=
1
4


K0,0 11⊗ 11 +

3∑

k=1

Kk,0 σ̂k ⊗ 11 +
3∑

l=1

K0,l 11⊗ σ̂l +
3∑

k,l=1

Kk,l σ̂k ⊗ σ̂l




The Pauli matrices were rewritten according to equation 4.16 and equation 4.17. Now, we
show how a correlation that includes 11 is given by an average over other correlations. As
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example we use a correlation with 11 for the first qubit expressed by an average of three
correlations made up of six relative frequencies, where the signs depend on the projector
for the second qubit. For K0,2 we get:

K0,2 =
+1∑

i,j=0

(−1)j ci,j
1,2 =

+1∑

i,j=0

(−1)jci,j
2,2 =

+1∑

i,j=0

(−1)jci,j
3,3 =

1
3

3∑

k=1

+1∑

i,j=0

(−1)jci,j
k,2 (4.20)

Hence, we see that K0,2 is an average over three measurements, namely X,Y and Z on qubit
1. Special is the term K0,0 = 1 which is unity due to normalization of the probabilities.
It can also be averaged over all contributing terms (e.g. 9 terms for 2 qubits):

K0,0 = 1 =
+1∑

i,j=0

ci,j
1,1 =

+1∑

i,j=0

ci,j
1,2 = ... =

+1∑

i,j=0

ci,j
3,3 =

1
32

3∑

k,l=1

+1∑

i,j=0

ci,j
k,l (4.21)

If we include these expressions into equation 4.19 we find:

ρ = 1
4

3∑

k,l=1

+1∑

i,j=0

ci,j
k,l

(
1
32

11⊗ 11 +
1
3
(−1)i σ̂k ⊗ 11 +

1
3
(−1)j 11⊗ σ̂l + (−1)(i+j) σ̂k ⊗ σ̂l

)

= 1
4

3∑

k,l=1

+1∑

i,j=0

ci,j
k,l

(
1
3

11 + (−1)i σ̂k

)
⊗

(
1
3

11 + (−1)j σ̂l

)

=
1
4

3∑

k,l=1

+1∑

i,j=0

ci,j
k,l

(
γi

k ⊗ γj
l

)
(4.22)

This corresponds formally to a decomposition as in equation 4.19. The sum consists,
however, of 36 terms (instead of 16) and the coefficients are the relative frequencies of the
count rates (instead of correlations), where the new basis vectors γi

k = (1
311 + (−1)i σ̂k)

are non-orthogonal in the vector space of density matrices (which is overdefined by this
number of vectors). The same decomposition is also possible for higher numbers of qubits
as is calculated directly in appendix C. Here, we state the result for N qubits:

ρ =
1

2N

3∑

{bj}=1

+1∑

{ij}=0

c
{ij}
{bj}

N∏

j=1

(
1
3

11 + sj σ̂bj

)
. (4.23)

Using this decomposition, the density matrix can be directly deduced from all measured
count rates.

As mentioned above, in general we use the data directly for evaluation of certain observ-
ables of the state. If necessary, however, this decomposition can also be used for fitting
a physical density matrix to the data. For example, the maximum likelihood approach
as presented in [163] can be used with the expectation values of the operators γi

k instead
of the tomographic set of projectors. Again the advantage is the usage of the complete
measurement data, reducing measurement times.
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4.3.3 Evaluation of relevant values

With the density operator obtained from quantum state tomography, any information we
seek to know about a quantum state can be determined. Yet, it requires, in particular for
multipartite states, a big experimental effort to measure all corresponding correlations.
Thus, when we are interested only in certain informations, we might be able to do with
only a restricted set of measurements.

Furthermore, even if the complete set of correlations is necessary, it is advantageous
to determine values directly from the measurement data because the error calculation is
simplified. This is particularily important, as the measured data reproduces a physical
state only within the statistical errors.

In the following, the derivation of characteristic values of a quantum state will be
presented. We discuss the evaluation of observables, then of entanglement measures.

Observables

The first experiments on entangled quantum states (at least with the explicit goal to study
entanglement) were Bell tests. Here, one determines a set of correlations and calculates
whether the experimental results were in agreement with the predictions from classical
(better: local hidden variable) theories, or whether they exceeded the predicted values
in accordance with quantum mechanics. Complete knowledge about the state is not
necessary.

In a similar way, the information whether a state is, for example, separable or symmetric
does not require complete knowledge of a quantum state. Yet, usually we cannot measure
the expectation values of the corresponding observables Ô (witness or swap operators,
respecively) directly, as they are in general non-local. In our experiments, we can only
measure local observables, i.e. correlations of the type K ~B = 〈Ô ~B〉. One can, however,
express Ô as linear combination of local observables. The expectation value of Ô can
then be calculated from the different correlations due to the linearity of the trace. As
this decomposition is not unique, we seek to find a minimal local decomposition, i.e. a
decomposition into local observables such that as few measurement settings as possible
are needed to evaluate Ô.

Most of the entanglement witnesses we discuss are already designed such that they
consist out of view measurement settings. Also the linear decomposition of the swap
operator is given in equation 2.32. It may be a little unexpected that also the fidelity of
an observed state relative to the desired one can be determined with reduced measurement
settings. It is given by the expectation value of the projector on the expected pure state
|ψ 〉:

Fψ
ρ = Tr [ |ψ 〉〈ψ | ρ] = 〈ψ | ρ |ψ 〉 (4.24)

Note, here, the close relation to the generic entanglement witness:

Tr [Wψρ] = Tr [(α11− |ψ 〉〈ψ |)ρ] = α− Fψ
ρ (4.25)

Minimal local decompositions of generic entanglement witnesses have been studied in
[166].

In particular the fidelity to graph states is, due to their special structure, easy to
determine from 2N correlations for N qubits. This will be demonstrated on the example
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of the four-qubit cluster state. The stabilizing group consists of 16 elements (which are
summarized in table 6.1). All other standard bases have zero correlations. Using the
decomposition of the density operator in terms of the standard bases we get:

F C4
ρ = 〈 C4 | ρ |C4 〉 =

3∑

i,j,k,l=0

Kijkl〈 C4 | σ̂i ⊗ σ̂j ⊗ σ̂k ⊗ σ̂l |C4 〉

=
16∑

m=1

Km〈 C4 | Ŝm |C4 〉 (4.26)

where Sm are the stabilizing operators and Km are the corresponding measured correla-
tions. Then, if the operators’ signs are chosen such that 〈 C4 | Ŝm |C4 〉 = 1, the fidelity is
simply the average over these 16 correlations. In dependence on their explicit form the
number of measurement settings might be even smaller – in our example 9 settings are
necessary. Compared to a state tomography with 81 settings this is a drastic reduction
of the effort. For graph states the problem is particularly simplified, but also for other
quantum states a strong reduction of settings is possible. For example, all states of the
first SLOCC-family of four-qubit entanglement (section 3.1), including the state D

(2)
4 ,

have at maximum 40 non-zero correlations, where at maximum 21 measurement settings
are necessary to evaluate the fidelity.

For the estimation of the errors we chose the straightforward approach: As the different
correlations partly stem from the same measurement setting, the expectation value of the
measured observable is expressed as linear combination of the different relative frequencies
instead of correlations. The errors on these are due to Poissonian counting statistics plus
errors on the detection efficiencies of the APDs. The total error is then calculated by
gaussian error propagation.

Entanglement measures

Entanglement measures like the concurrence, the entanglement of formation, the neg-
ativity and the geometric measure of entanglement, which were introduced in the first
chapter, are not linearly dependent on the density matrix. Therefore, we need (to our
best knowledge) the complete density matrix of the state for their evaluation, in contrast
to the evaluation of the entanglement witnesses, symmetry etc. introduced before. For a
lower bound on the geometric measure of entanglement we use a smaller set of data, as
demonstrated in the first chapter.

The concurrence and negativity of two-qubit states, however, will be calculated explic-
itly according to equation 2.45 and equation 2.49 (pages 18 and 19). With the density
matrix obtained with the method demonstrated in section 4.3.2 these values can easily
be obtained. As mentioned before, these matrices are not physical. Yet, we expect the
correct physical matrix to be within the error bounds of the data. The estimation of
the error on the entanglement measures is, however, not as straightforward as in the last
section and will be outlined shortly in the following.

The error on the concurrence can be estimated via perturbation theory of non-hermitian
matrices as presented in James et al. [163]. The decomposition of the density matrix they
used can easily be substituted with the decomposition in equation 4.23.
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The negativity can be calculated by using the measurement data directly via a slight
modification of the presented tomography. To do so, the partial transpose with regard to
one subsystem (here the second) is directly applied on our decomposition (equation 4.22):

ρPT
exp =




3∑

k,l=1

+1∑

i,j=0

ci,j
k,l

(
γi

k ⊗ γj
l

)



PT

=
3∑

k,l=1

+1∑

i,j=0

ci,j
k,l

(
γi

k ⊗ (γj
l )

T
)

. (4.27)

Thus, simply transposing the γ-matrices of one qubit allows the calculation of the partially
transposed density matrices, where the coefficients given by the measurement data are
left unchanged. This can, naturally, be also applied to multiqubit density matrices, where
several qubits can be transposed this way in equation 4.23. To obtain the negativity, the
eigenvalues of this density matrix are calculated. The reduction of the problem to the
calculation of eigenvalues reduces the error calculation to a known problem. In [163] the
calculation of the errors on the eigenvalues of a density matrix derived from tomography
via perturbation theory is presented.

In this section, the determination of all values that are calculated in the experimental
analyses in chapters 5, 6 and 7 were completed. The calculation of all values is reduced
directly to measurement data. To do so even for entanglement measures, which are no
observables, we rely on a new kind of tomographic decomposition that is suited to our
strategy of state analysis (equation 4.23). In the following, the tomography of a quantum
process will be demonstrated.

4.3.4 Quantum process tomography

In addition to the description of quantum states, it is of interest to describe also the
processes acting on quantum states. This constitutes, for example, an important part
of the analysis of the phase gate whose experimental realization is presented in the next
chapter. Several quantum operations have already been introduced in the first chapter,
section 2.2.3. These operations mapped pure onto pure states. Real processes, however,
often cause mixing. Thus, a general quantum process describes a map of density matrices
onto density matrices. The experimental determination of a full description of such a
process is called quantum process tomography (QPT). There is some literature on this
subject (e.g. [44, 46, 167–169]), and the process tomography we use14 is mostly along the
lines of [44, 46, 168], however, without the restriction to trace-preserving processes. To
describe a quantum process we need to develop two things: a strategy to determine the
necessary parameters experimentally and a convenient way to represent the process.

Firstly, a complete description of a quantum process Q̂ should make predictions about
the output state ρout for arbitrary input states ρin. Assuming linearity of the process one
can see, that it is sufficient to describe the process only for a tomographic set of input
states B̂i:

Q̂(ρin) = Q̂(
∑

i

λiB̂i) =
∑

i

λiQ̂(B̂i). (4.28)

14Similar to the case of quantum state tomography, we omit the fitting to general physical matrices. We
prefer the approach presented in the following chapter, i.e., fitting a model of the physical process to
the data.
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In case the process is lossy this results in a reduced trace of Q̂(ρin) which corresponds to
the probability pout of not loosing the state (in the following called success probability).
Accordingly the normalized output state is:

ρout =
Q̂(ρin)

Tr(Q̂(ρin))
⇒ Q̂(ρin) = Tr(Q̂(ρin))ρout = poutρout (4.29)

Thus, the complete information about the process is described by the output state and
the probability of success. Using equation 4.28 we get:

poutρout = Q̂(ρin) =
∑

i

λiQ̂(B̂i) =
∑

i

λipiB̂′i (4.30)

where B̂′i is the normalized state after action of the process Q̂, and pi is the corresponding
probability of success. By rewriting B̂′i in terms of B̂i the quantum process is described
by a matrix µij :

B̂i
′ =

∑

j

µijB̂j . (4.31)

Secondly, in order to obtain a convenient representation of the quantum process we
start from the operator-sum representation (Kraus representation [170]):

Q̂(ρ) =
∑

k

ξkUkρU t
k (4.32)

where Ui are unitary operators depending on the process and ξk are real coefficients,
denoting the probability of occurrence of Ui. This can further be translated to some
standard representation by rewriting the unitary operators in terms of the bases Ej :

Uk =
∑

i

τikEj . In general, Ej are the 3N tensor products of Pauli matrices (N is the

number of qubits). Thus, the operation can finally be expressed in the form

Q̂(ρ) =
∑

i,j

∑

k

ξkτikτjkEiρEt
j =

∑

i,j

χijEiρEt
j (4.33)

where χij =
∑

k ξkτikτjk is a complete representation of the process, as the basis Ei is
a fixed set of unitary operations and the whole equation describes the action on any
quantum state.

Finally, the same physical process is described by equation 4.31, which includes expres-
sions that can be determined experimentally, and equation 4.33, which can be used for its
convenient representation. Thus, we find χml for a chosen tomographic set of states by:

pi

∑

j

µijB̂j = Q̂(B̂i) =
∑

m,l

χmlÊmB̂iÊ
†
l (4.34)

The tomographic set we use consists of separable input states, because separability can
be guaranteed (in contrast to entanglement) by simply applying local projective measure-
ments on the photons.
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4.3 From clicks to density matrices

By using polarizers in combination wave plates we choose the following set of 16 input
states: ( |HH 〉 , |HV 〉 , |H+ 〉 , |H−〉 , |V H 〉 , |V V 〉 , |V + 〉 , |V L 〉 , |+H 〉 ,
|+V 〉 , |++ 〉 , |+L 〉 , |LH 〉 , |LV 〉 , |L+ 〉 , |LL 〉). The explicit procedure how to
derive χml for the standard transformations out of the corresponding Q̂(B̂i) can be found
in [46].

Before this transformation can be performed we need to know the success probabilities
pi. In the following, a one-qubit example will be used to demonstrate how pi can be
derived from the measurement. For this we use pure separable input states, analyse in
the standard bases and assume that the components in the setup are well-aligned with the
H/V coordinate system. Imagine the transformation introduced by a beam splitter with
perfect transmission for horizontal and 50% transmission for vertical polarization acting
on a single photon under the condition of its transmission. The transformation leaves
horizontal and vertical polarizations unchanged. Superpositions of the two are, however,
transformed:

|+ 〉〈+ |= 1
2

(
1 1
1 1

)
BS→ 1

2

(
1 1√

2
1√
2

1
2

)
= |ν 〉〈 ν | (4.35)

where |ν 〉 =
√

2
3( |H 〉 + 1√

2
|V 〉)15. As one can see, the diagonal elements are the

transmission probabilities for horizontal and vertical polarization. In the same way, we can
express all the diagonal elements of output density matrices in terms of the transmission
and reflection probabilities in the case of many qubits, e.g. for two qubits by pHH , pHV ,
pV H and pV V . Reversely, we can also infer these probabilities from the diagonal elements
of the output density matrices for the whole tomographic set of input states. With this, all
the ingredients necessary to derive the whole process matrix (also called superoperator)
χij are collected.

The superoperator of the ideal phase gate, which was introduced in section 2.2.3, is
shown in figure 4.3. The two axes represent the transformations Ei acting from the left
hand side on a state and Et

j acting from the right hand side in equation 4.33. The
structure of the matrices is easily understandable by recalling the representation of CP

in the standard basis (equation 2.30):

CP =
1
2
(11⊗ 11 + 11⊗ σ̂z + σ̂z ⊗ 11− σ̂z ⊗ σ̂z) (4.36)

The diagonal elements of χCP
ij show the probabilities for the four different terms to act

on the state. The off-diagonal elements demonstrate the introduced changes in the coher-
ences, making the negative phase for the σ̂z ⊗ σ̂z term clearly visible.

In chapter 5 we quantify how well certain processes χp reproduce the phase gate op-
eration. To this end we use, in analogy to the fidelity for states, the process fidelity
[44]:

Fp = Tr
[
χpχCP

]
, (4.37)

where χp = χp/Tr [χp] is the normalized process matrix to be tested, which is not neces-
sary in case it is trace preserving.

15This is a POVM on a single qubit, see section 4.2.
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4 Entanglement Engineering with Polarized Photons

Figure 4.3: Superoperator of an ideal phase gate. The z-axis shows the amplitude of the
different contributing unitary transformations action from left (x-axis) and right (y-axis)
on the density matrix of the input states. Diagonal elements correspond to the different
unitary transformations, the off-diagonal elements to the coherences created between the
corresponding parts of the output state. The negative phase introduced by the gate is
visible in the off-diagonal elements along the ZZ-row and column.

4.4 Summary

In this chapter, the techniques that are common to the experiments presented in the
following chapters are summarized.

As source of photons we rely on type-II spontaneous parametric down conversion. Two
different configurations are used in our experiments. In chapters 5 and 6, the non-collinear
configuration allows to coincidentally create entangled photon pairs in two distinct spa-
tial modes. In contrast, for the observation of the symmetric Dicke state (chapter 7), the
collinear configuration is advantageous, because the photons are collected in one spatial
mode and therefore indistinguishable up to polarization, which makes them intrinsically
symmetric under permutation. For further processing of the photons we rely on linear
optics and conditional detection. Here, different types of beam splitters serve as a flexi-
ble tool to implement stochastic local operations and, more important, two-qubit gates.
Further, any local unitary operation can be implemented with birefringent crystals.

The analysis of quantum states that are observed with these techniques relies on local
polarization analysis in each spatial mode. The data collected in the first place are basi-
cally coincidence count rates for every setting of the polarization analysis. From these we
evaluate all the quantities we use to describe the entangled state. Also density matrices
and values derived thereof are directly inferred from the counting statistics (which is in
contrast to the strategy of fitting the data to a physical state). To this end we derived a
tomographic representation of the density matrix that is particularly suited to our way of
polarization analysis. The description of a whole quantum process is possible when the
density matrices for a tomographic set of input states is measured. This type of analysis
will be used in the following chapter as basis for the investigation of the experimentally
obtained phase gate operation.
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5 The Phase Gate

The controlled phase gate forms together with single qubit operations a universal set of
quantum gates, that means any quantum computation can be implemented with these
operations. Further, this gate operation can be used for the initialization of a one-way
quantum computer, where cluster states are created by next-neighbor interaction. Both
applications are due to the gates capability to create maximal pairwise entanglement from
separable qubits. Even if big quantum networks cannot yet be built for technical reasons,
already a single gate can serve for several applications, e.g. for complete Bell state analysis
[171, 172] to obtain a four-qubit cluster state by entangling two EPR-pairs (chapter 6).

One of the main advantages of photons, their weak interaction with the environment,
becomes the major challenge for the implementation of a phase gate (or its close relative,
the CNOT gate) due to low nonlinear interaction efficiencies. A possible solution is to
use linear optics components together with ancillary single photons and photon number
resolving detectors to introduce the non-linearity [151]. Several proof-of-principle ex-
periments demonstrated the feasibility of this approach once the necessary components
become available on a larger scale [173–175]. In case one is interested in only a limited
number of quantum operations, however, a solution that was already discussed in the
previous chapter is available: linear optics and conditional detection. It enables the im-
plementation of probabilistic quantum gates in the coincidence basis. A first idea for the
realization of a phase gate with this technique was recently introduced and implemented
experimentally [41–44] with a setup that was based on a combination of first and second
order interference resulting in a gate with success probability 1/9. The stability required
due to the first order interference are, however, on the order of a wavelength, making
multiphoton applications of the gate difficult.

Here, a linear optics controlled phase gate that is based solely on a single two-photon
interference at a polarization dependent beam splitter is introduced. The advantage of the
gate is its simplicity: Neither first order interference nor ancillary photons are required.
The reduced stability requirements are on the order of the coherence length of the photons
and make it a perfect tool for multiphoton experiments, e.g. complete Bell state analysis
for quantum communication [171] or the observation of a cluster state (chapter 6). Note
that together with our experiment two similar ones were performed [176–178].

This chapter is divided into three parts. First, the basic idea for the implementation
of a linear optics phase gate is introduced. A more accurate description of the resulting
setup is obtained by a model that takes real experimental parameters into account. It
allows a deeper understanding of the real requirements on the implementation and plays
a central role in testing the gate. Then, the experimental setup and the parameters char-
acterizing the corresponding components are described. In the third part, the obtained
gate operation is characterized in two steps. First, the process is reconstructed from a
tomographic set of measurement data (the method was described in section 4.3.4). This
allows the quantification of the gate quality. Via a fit of the model presented in the first
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5 The Phase Gate

part to the resulting process matrix, we obtain all relevant physical parameters of the gate
and in addition a physical density matrix for further evaluation. In the last part, a focus
is put on the gates capability to entangle. Here, we rely on the one hand, on entanglement
observed in the experiment, on the other hand on the predictions from the model which
are then compared to the measured data and used to infer the real entangling capability
and the reason for its decrease in the real gate.

5.1 Basic idea and model

In section 4.2 it was mentioned that the second order interference (Hong-Ou-Mandel
interference [158, 179]) of a photon pair at a beam splitter can, together with conditional
detection, serve as a useful tool for the implementation of quantum gates. It was, for
example, often applied successfully for Bell state analysis. There, destructive interference
between two-photon transmission and reflection of a symmetric two-photon state occurs
because beam splitters (BS) introduce a π-phase shift between the amplitudes for the two
cases [155]. Here, we benefit from such a phase shift at a special BS introducing the phase
necessary to implement the controlled phase gate.

5.1.1 Scheme for ideal phase gate

To implement the CP -operation (see section 2.2.3), we need to realize the following actions
on a general state in the computational basis:

CP |ψin 〉 = CP (cHH |HH 〉+ cHV |HV 〉+ cV H |V H 〉+ cV V |V V 〉) =
|ψout 〉 = (cHH |HH 〉+ cHV |HV 〉+ cV H |V H 〉 − cV V |V V 〉), (5.1)

where cHH denotes the amplitude of the |HH 〉-term and analogous for the other terms.
The basic idea is to implement the π-phase shift via second-order interference at a

polarization dependent beam splitter (PDBS) (figure 5.1). Two input modes a and b are
overlapped at PDBSO, with perfect transmission for horizontal and 1/3 transmission for
vertical polarization1. The latter results in a total amplitude of −1/3 for the |V V 〉 output
terms. This can be seen by adding the amplitudes contributing to a coincident detection,
i.e. transmission or reflection of both photons:

(T a
V · T b

V ) + (iRa
V · iRb

V ) =

√
1
3

√
1
3
−

√
2
3

√
2
3

= −1/3, (5.2)

where T x
i (Rx

i ) is the amplitude for transmission (reflection) of state | i 〉 in mode x.
Perfect transmission of horizontal polarization prevents interference of the contributions
|HH 〉, |HV 〉 and |V H 〉, because for these terms a coincidence is only achieved if both
qubits are transmitted. For perfect gate operation, the absolute values of all amplitudes
have to be equal, independent of the input state. Thus, we still need to attenuate the
contributions that include horizontal polarization. This is achieved by adding PDBSa/b in
the two output modes, respectively. These beam splitters exhibit the transmission 1/3 for
horizontal polarization and perfect transmission for vertical polarization. All together, we
find a probability of 1/9 to obtain a coincidence in the outputs and thus a gate operation.

1The value 1/3 can be derived from the conditions resulting from the calculation in section 5.1.3.
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5.1 Basic idea and model

Figure 5.1: Realization of a linear
optical controlled phase gate: Two
polarized photons from different spa-
tial modes are overlapped at a po-
larization dependent beam splitter
PDBSO with perfect transmission
for horizontal and 1/3 for vertical po-
larization. Further, beam splitters
PDBSa,b with the inverse splitting
ratio in both output modes, respec-
tively, compensate the partially po-
larizing effect of PDBSO. The CP

operation is achieved by coincident
detection of photons in the two out-
put modes. For analysis of the gate
operation a polarization analysis unit
(figure 4.2 b) is placed in each of these
spatial modes.

Let us express the operations introduced by the different BSs in terms of matrices. To
do so, it will be instructive to express the processes for transmission and reflection of both
photons independently. Assuming perfect interference, the two resulting process matrices
simply need to be added up.

In case the two photons are transmitted through the setup, the following matrix acts
on the state:

ˆPDBSa · ˆPDBSb · ˆPDBStt
O = M̂tt (5.3)



1√
3

0 0 0
0 1√

3
0 0

0 0 1 0
0 0 0 1


 ·




1√
3

0 0 0
0 1 0 0
0 0 1√

3
0

0 0 0 1


 ·




1 0 0 0
0 1√

3
0 0

0 0 1√
3

0
0 0 0 1

3


 =




1
3 0 0 0
0 1

3 0 0
0 0 1

3 0
0 0 0 1

3 .




Further, the case when two photons are reflected is represented by:

ˆPDBSa · ˆPDBSb · ˆPDBSrr
O = M̂rr (5.4)



1√
3

0 0 0
0 1√

3
0 0

0 0 1 0
0 0 0 1


 ·




1√
3

0 0 0
0 1 0 0
0 0 1√

3
0

0 0 0 1


 ·




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

3


 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

3


 .

The total operation acting on a state |ψ 〉 is then:

M̂tt |ψ 〉+ M̂rr |ψ 〉 = (M̂tt + M̂rr) |ψ 〉 =




1
3 0 0 0
0 1

3 0 0
0 0 1

3 0
0 0 0 −1

3


 |ψ 〉 =

1
3
CP |ψ 〉. (5.5)
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5 The Phase Gate

Thus, the operation CP is indeed realized with an amplitude of 1
3 , i.e., a success proba-

bility of 1
9 . In the following two sections the presented setup is taken as starting point to

discuss deviations of the experimentally realized phase gate from the ideal one caused by
imperfect interference on the one hand and imperfect components on the other.

5.1.2 Modeling distinguishable photons

The gate operation described before assumes perfectly indistinguishable photons and
therefore perfect interference. The related operation is not unitary due to loss, can how-
ever be treated like a unitary gate operation with an additional attenuation, because the
losses are polarization independent. Thus, the gate maps pure states onto pure states.
In multiphoton experiments there are, however, so far no photon sources that allow the
creation of completely indistinguishable photons. It was argued in section 4.1.1 that the
indistinguishability of photons from pulsed SPDC is achieved by spectral filtering, relying
on a trade-off between good visibility and high count rates. Additionally, the imperfect
spatial matching of the two input modes in the gate leads to an increased distinguisha-
bility2. Accordingly, we need to consider the effect of partially distinguishable photons in
the phase gate.

The phase gate relies on the interference between the terms of two transmitted and two
reflected photons. Distinguishability of photons implies, that it is in principle possible
to ascertain the path they have taken, e.g. by their spectrum. Thus the detected events
can be split into three categories: indistinguishable photons and distinguishable photons
that were transmitted or reflected. Thus, the action of a realistic phase gate PGmod on a
mixed state ρ is (in contrast to the perfect operation in equation 5.5):

PGmodρPG
†
mod = Q′(Mtt + Mrr)ρ(Mtt + Mrr)†

+ (1−Q′)(MttρM †
tt + MrrρM †

rr), (5.6)

where the quality factor Q′ denotes the probability to observe an indistinguishable pair
of photons. If the distinguishable parts are not negligible, this results in two important
effects. Firstly, additional mixing: pure states are in general mapped to mixed states.
Secondly, as will be argued in the following, the probability to obtain an output (which is
the trace of the output state) becomes dependent on the input state and the process can
thus not be considered as trace preserving.

For a general input state, the terms |HH 〉, |HV 〉, |V H 〉 are not subject to interference
because the photons are always transmitted, therefore there is no difference whether the
photons are distinguishable or not. In contrast, we find two completely different behaviors
for the term |V V 〉. If the two photons are indistinguishable, then the amplitudes for both

being transmitted or reflected have to be summed up:
√

1
3

2

−
√

2
3

2

= −1
3 resulting in a

probability of pind.
V V = 1

9 of a |V V 〉 detection. In contrast for distinguishable photons, one

considers the sum of the probabilities pind.
V V =

∣∣∣∣
√

1
3

2
∣∣∣∣
2

+
∣∣∣∣−

√
2
3

2
∣∣∣∣
2

= 5
9 of the two respective

2The spatial distinguishability is not an issue of an imperfect source but rather of the quality of the
achieved spatial overlap at the beam splitter. However, it has the same effect and cannot be separated
from the spectral distinguishability.
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5.1 Basic idea and model

cases. Therefore, the probability to obtain an output from the incoherent part of the
photons is, for two vertically polarized photons, higher by a factor of five compared to the
case of coherent, indistinguishable photons.

5.1.3 Modeling general components

The previous considerations showed that the gate operation is affected by photon prop-
erties. Apart from this, the theoretically expected parameters for the PDBSs cannot
be perfectly reproduced by real components. In addition, the values obtained for the
components in the experiment strongly depend on their alignment in the experimental
setup. In order to enable a description of the influence of real components, the setup is
modeled with general beam splitting ratios. Thereby, we find that the requirements on
the components necessary for a phase gate operation can be slightly relaxed. Consider a
general input state (as in equation 5.1):

|ψin 〉 = (cHH a†H b†H + cHV a†H b†V + cV H a†V b†H + cV V a†V b†V ) |0 〉 (5.7)

with e.g. a†H b†V |0 〉 = |HV 〉. Using the definition of the action of a general beam splitter
in equation 4.10 we obtain as operator:

(cHHT a
HT b

H − cHHRa
HRb

H) a†H b†H
+ (cHV T a

HT b
V − cV HRa

V Rb
H) a†H b†V

+ (cV HT a
V T b

H − cHV Ra
HRb

V ) a†V b†H
+ (cV V T a

V T b
V − cV V Ra

V Rb
V ) a†V b†V . (5.8)

Here, only the contributions where the photons split up are considered, because we rely on
conditional detection. The second pair of beam splitters (PDBSa,b) is used only in trans-
mission as attenuating plates. The corresponding transmission (reflection) amplitudes of
these attenuation plates are labeled as XY (Xx

Y ) where X denotes the spatial mode and
Y the polarization:

a†H →
(
AH a†H + iAx

H a†xH

)

a†V →
(
AV a†V + iAx

V a†xV

)

b†H →
(
BH b†H + iBx

H b†xH

)

b†V →
(
BV b†V + iBx

V b†xV

)
. (5.9)

For simplicity, the amplitudes XY and Xx
Y are complex and contain also the relative

phase shifts between H and V that can, if necessary, be set via additional birefringent
wave plates (as argued in section 4.2).As the reflected modes (superscript x) are ancillary
they are not considered in the following. We obtain:

(cHHT a
HT b

HAHBH − cHHRa
HRb

HAHBH) a†H b†H
+ (cHV T a

HT b
V AHBV − cV HRa

V Rb
HAHBV ) a†H b†V

+ (cV HT a
V T b

HAV BH − cHV Ra
HRb

V AV BH) a†V b†H
+ (cV V T a

V T b
V AV BV − cV V Ra

V Rb
V AV BV ) a†V b†V (5.10)

65



5 The Phase Gate

The first requirement that we use to simplify this calculation is that the amplitudes for
input states |HV 〉 and |V H 〉, i.e., cHV and cV H , should be left unchanged by the gate.
An equal reduction of the amplitude by a factor f is, however, allowed, resulting in:

cHV T a
HT b

V AHBV − cV HRa
V Rb

HAHBV = cHV · f
cV HT a

V T b
HAV BH − cHV Ra

HRb
V AV BH = cV H · f. (5.11)

By removing f we get:

T a
HT b

V AHBV − T a
V T b

HAV BH =
cV H

cHV
Ra

V Rb
HAHBV a†H b†V −

cHV

cV H
Ra

HRb
V AV BH a†V b†H .

(5.12)
As the coefficients of the input state are arbitrary, we can finally conclude (after removing
trivial cases) two possible conditions:

1) Ra
H = 0 = Rb

H , (5.13)
2) Ra

V = 0 = Rb
V . (5.14)

We choose the first (equation 5.13), as it is consistent to the originally introduced idea.
From equation 5.12 we get then:

cHHT a
HT b

HAHBH a†H b†H
+ cHV T a

HT b
V AHBV a†H b†V

+ cV HT a
V T b

HAV BH a†V b†H
+ (cV V T a

V T b
V AV BV − cV V Ra

V Rb
V AV BV ) a†V b†V . (5.15)

After this simplification, the action of the parameters by PDBSa,b and PDBSO cannot
be separated anymore. Thus, they are substituted by total transmission (τY

X = T Y
X · YX)

and reflection (ρY
X) amplitudes. We get:

cHHτa
Hτ b

H a†H b†H
+ cHV τa

Hτ b
V a†H b†V

+ cV Hτa
V τ b

H a†V b†H
+ (cV V τa

V τ b
V − cV V ρa

V ρb
V ) a†V b†V . (5.16)

As we require all amplitudes to be equal, the operation has to fulfill the condition:

τa
Hτ b

H = τa
Hτ b

V = τa
V τ b

H = −(τa
V τ b

V − ρa
V ρb

V ). (5.17)

Therefore we can conclude:

τa
H = τa

V =: τa, (5.18)
τ b
H = τ b

V =: τ b, (5.19)
ρa

V ρb
V = 2τaτ b. (5.20)

This finally leads to four conditions (together with equation 5.13) that the experimental
setup has to fulfill in order to result in a probabilistic phase gate operation:
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1. Ra
H = 0 = Rb

H

The reflectivity of the overlap beam splitter PDBSO for horizontal polarization
should be zero.

2. Ra
V Rb

V

T a
V T b

V

= 2
This ratio of transmission and reflection amplitudes of PDBSO is the substitute for
the fixed values of RV =

√
2TV =

√
2/3 in the ideal case.

3. T a
HAH = T a

V AV

This is the only condition on the attenuation plate in mode a. The transmission
amplitude for both polarizations needs to be such that the polarization of a single
photon transmitted through the whole setup from mode a is conserved, i.e. the effect
of PDBSO is compensated.

4. T b
HBH = T b

V BV

The same condition as 3.) for the attenuation plate in mode b.

The parameters of the originally presented ideal phase gate follow from these condi-
tions under the assumption of a loss free, symmetric overlap beam splitter. The whole
calculation was performed for indistinguishable photons to discuss the distinct imperfec-
tions separately. The considerations of section 5.1.2 and section 5.1.3 are combined by
expressing the matrices M̂tt and M̂rr (section 5.1.2) in terms of the parameters derived
here.

These four conditions establish requirements on the three components independently
and therefore turn out to be extremely useful for the alignment of the experimental setup,
which will be presented in detail in the following section.

5.2 Experimental setup

In this section, the actual experimental implementation of the phase gate will be described.
This includes the quantification of the distinguishability of the photons used to test the
phase gate via an Hong-Ou-Mandel type (HOM) interference experiment. Further, the
components used in the setup are characterized with respect to the parameters discussed
in the last section. For a detailed description of how the setup was built, the interested
reader may refer to the Diploma thesis by Ulrich Weber [156].

For the experimental investigation of the gate we use photon pairs emitted from a non-
collinear SPDC source, as described in section 4.1.1. As perfect entanglement cannot
be guaranteed, we prefer to use separable states as input for the phase gate. Therefore,
a horizontally and a vertically aligned polarizer are placed in the two emission modes,
respectively, before they are coupled into single mode fibers. These fibers guide the
photons to the phase gate. Via stress induced birefringence in the fiber, the polarizations of
the photons are rotated at will to arbitrary separable input states. Thus, the preparation
of the input states is completely independent of the phase gate setup itself. The spectral
filtering of the photons (filter bandwidth ≈ 2 nm FWHM) is achieved by interference
filters mounted in the phase gate setup together with the polarization analysis. While the
actual position of the filters is irrelevant, this choice has the advantage that by filtering
in the output ports of PDBSO possible differences between the filter functions have less
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5 The Phase Gate

Figure 5.2: Photo of the linear optics controlled phase gate setup. On the left hand side,
the two couplers where the photons enter the gate are located. The actual gate operation
takes place at the three beam splitters in the center of the picture. The photons are
overlapped at the cube and attenuated at the round PDBS plates. On the right hand side,
the polarization analysis is mounted consisting of two motorized rotation mounts for the
wave plates, an interference filter, a PBS and multimode fibers that guide the photons to
the APDs (section 4.2).

influence, because the filter function does not ”label” the photon by its mode. Thus, better
indistinguishability is guaranteed.

A picture of the experimentally realized phase gate is shown in figure 5.2. The photons
enter the setup in modes a and b via two different fiber coupling systems. In mode a,
the fiber coupler is mounted on a translation stage moving parallel to the photons spatial
mode. Thereby, the optical path length of the photon from the SPDC crystal to PDBSO

can be set. This allows to compensate arbitrary time delays of the two photons at the
overlap beam splitter. The other coupler allows alignment of the transverse position and
direction of the spatial mode b. In addition, the position of the focus of the emitted
gaussian beam can be set (the corresponding divergence is equal for both modes due to
usage of identical optics components). Thus, the spatial overlap of mode b with mode a
can in principle be achieved. For details on the alignment procedure, refer to [156].

The three beam splitters PDBSO, PDBSa and PDBSb are custom made and were
coated for perfect transmission of p- and 2/3 transmission for s- polarization for photons
with a wavelength of 780 nm. The overlap beam splitter PDBSO is a cube mounted such
that |H 〉 is perfectly transmitted. For attenuation, we use beam splitting plates (PDBSa

and PDBSb) with the same coating as PDBSO, however the mount is rotated by 90 ◦

such that the roles of horizontal and vertical polarizations are exchanged. Real beam
splitters do not exactly reproduce the desired values and are, in addition, dependent on
the angle of incidence (AOI) of the photons. Therefore, it is very useful to apply the
four conditions derived in the previous section (see equation 5.1.3, page 66) for their
alignment. Conditions 1.) and 2.) are requirements on PDBSO only and cannot be
compensated by additional components. Thus, we first seek to align the AOI of PDBSO
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5.2 Experimental setup

Figure 5.3: Hong-Ou-Mandel interference at the polarization dependent overlap beam
splitter PDBSO in the phase gate for a |V V 〉 input. In case of perfect interference the
count rate should drop down to 20 % leading to a theoretically achievable dip visibility of
80%.

such that these conditions are fulfilled as good as possible. Because we observed that
condition 1.) does not dependent on the AOI of PDBSO we optimize 2.) reaching a value
of 2.018 ± 0.003 for the respective ratio3. The corresponding value for condition 1.) is
then |T a

H | ,
∣∣T b

H

∣∣ ≈ 0.993. Finally, following conditions 3.) and 4.), the attenuation plates
PDBSa and PDBSb are tilted such that the polarization of a single photon transmitted
through the whole setup (mode a or b) is preserved as good as possible.

As argued before, a perfect overlap of the two gaussian modes a and b can be achieved
by alignment of the coupler in mode b. Furthermore, we need to ensure equal optical
path length for both photons between the crystal and PDBSO. To do so, we use a
HOM-type measurement [158, 179] providing information about the position of zero delay
and about the quality factor Q′ that describes the indistinguishability of the photons
for each delay. By scanning the delay between the two photons, using the coupler in
mode a, it is possible to sample the |V V 〉-coincidence count rates for the transition from
completely distinguishable to maximally indistinguishable photons. The outcome of a
typical measurement is shown in figure 5.3. When the photons become less distinguishable,
the count rate drops. This is due to the fact that, as argued in section 5.1.2, the probability
of a coincident detection of |V V 〉 at the output of the phase gate is lower when interference
occurs (in the ideal case by a factor of five).

The gaussian shape of the resulting curve is mainly determined by the interference
filters used for spectral filtering of the photons. Thus, we can use a gaussian function to
fit this curve:

c(x) = A

(
1− Ve

−(x−x0)2

2∆2

)
, (5.21)

where A is the count rate for big delay, V is the visibility of the HOM-dip, ∆ is its width
and x0 is the position of the minimum, where zero delay between the two path lengths is
reached. All measurements for the characterization of the gate made in the following are

3The ratio RV /TV is equal for both PDBSO input modes. For a loss free beam splitter this corresponds
to a transmittivity (reflectivity) of the vertical polarization of T 2

V = 0.331 (R2
V = 0.669).
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5 The Phase Gate

taken with the translation stage in mode a at x0.
The value of interest for determination of the indistinguishability of two photons is V.

It can be expressed as V = (c∞ − c0) /c∞ where c∞ is the count rate at positions with
big delay, i.e. perfect distinguishability, and c0 the rate at zero delay. In a typical HOM-
experiment at a symmetric beam splitter, the ideal value is 1, which means vanishing count
rates for perfect indistinguishability. Here, we have to consider the special splitting ratio
of the beam splitter. For large delay, the success probability p∞V V = 5/9, which reduces
in the ideal case to p0

V V = 1/9 for perfect indistinguishability. This results in an ideal
visibility of Videal = 80%. Experimentally we find Vexp = 72.8%±0.7%. From this we can
calculate the fraction of indistinguishable photons as Q = Vexp/Vth = 91.0%±0.9%. This
also means that the probability of observing a coincidence from two vertically polarized
input photons is increased by an admixture of the state |V V 〉〈V V | , which is obtained
for any input state that includes |V V 〉-terms. This admixture plays an important role
in the further analysis and will henceforth be refered to as V V -noise. It is directly visible
in figure 5.3 as the difference between the minimum count rate and the 20%-level.

5.3 Experimental analysis of the gate

The experimental analysis of the phase gate is conducted in two steps:
First, a complete set of data describing the gate operation is measured. With the

quantum process tomography described in section 4.3.4 an experimental superoperator
χData is derived. We proceed with the evaluation as depicted in figure 5.4: The model
that was presented in section 5.1 is fitted to χData resulting in a physical process matrix
χFit. Then, we use the fitted model to estimate the process that is obtained by the phase
gate when the photons are completely indistinguishable (χIP ). In the discussion, a major
focus is put on the ability of the model to reproduce the experimental gate and on the

Figure 5.4: Overview of the process tomography evaluation. The superoperator inferred
linearly from the measured data (χData) is fitted with the model derived in section 5.1,
resulting in a physical superoperator (χFit). To learn more about the influence of the
gates’ components we study the process resulting from χFit when we assume indistinguish-
able photons (χIP ), i.e. Q = 1. To simplify the comparison of these operators with each
other and an ideal probabilistic phase gate (χIdeal), the differences between the superop-
erators that are connected with dashed arrows are shown in the figure indicated by the
corresponding labels.
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|ψin 〉 |ψout 〉 = CP |ψin 〉 〈ψout | ρout |ψout 〉
|HH 〉 |HH 〉 0.993
|HV 〉 |HV 〉 0.962
|V H 〉 |V H 〉 0.934
|H+ 〉 |H+ 〉 0.954
|+H 〉 |+H 〉 0.933
|HL 〉 |HL 〉 0.956
|LH 〉 |LH 〉 0.954
|V V 〉 |V V 〉 0.981
|V + 〉 |V−〉 0.814
|+V 〉 |−V 〉 0.818
|V L 〉 |V R 〉 0.815
|LV 〉 |RV 〉 0.856
|++ 〉 1√

2
( |H+ 〉+ |V−〉) 0.799

|+L 〉 1√
2
( |HL 〉 − i |V R 〉) 0.785

|L+ 〉 1√
2
( |LH 〉 − i |RV 〉) 0.867

|LL 〉 1√
2
( |HL 〉+ i |V R 〉) 0.835

Table 5.1: Fidelity of the observed output states ρout of the phase gate for a complete
tomographic set of input states |ψin 〉. Errors on all values are ≈ 0.01.

quality of the observed gate operation compared to an ideal one (χIdeal). Further, the
influence of the major error, i.e. indistinguishable photons, is studied by comparison of
χIP to χFit and χIdeal.

Then, we focus on the most important property of the phase gate, i.e., its power to
entangle two photons. The entanglement that is obtained experimentally from completely
separable input states is studied. The results are compared to the ones obtained with the
fitted model process matrix χFit. From the model, we can then predict measurement
outcomes for all other input states. This way, we establish a value of the maximally
achievable entanglement (entanglement capability) and identify influences of the different
imperfections of the gate on the experimental data. Further, the entanglement that could
be achieved with perfectly indistinguishable photons but real gate components is discussed.

5.3.1 Description of the experimental process

It was argued in section 4.3.4 that a superoperator of a quantum process can be determined
from the output density matrices of a complete tomographic set of input states. Here, we
choose a tomographic set of separable input states, as they can be prepared with almost
perfect fidelity. An overview of these states together with the corresponding expected
output states and the experimentally achieved fidelity is shown in table 5.14. This data
was obtained with a count rate of about 420-820 counts/min (dependent on the input
state) and a measurement time of 180min per output state.

4Note that these values are, like in [156], derived with the tomography method in [163].
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Figure 5.5: Process matrices deduced from the measurement data. Matrix a) is the repre-
sentation of the process directly deduced from the measured data (χData). For comparison,
the physical process matrix χFit achieved by fitting the model to χData is depicted in b).
The differences between the matrices are visualized as density plot in c). Matrix d) shows
the differences between the χData and an ideal density matrix with success probability 1/9
(χIdeal, figure 5.6 b). For all matrices only the real part is shown, imaginary parts are
comparable to the noise in the respective real part.

Using the quantum process tomography formalism introduced in section 4.3.4 we can
now derive the superoperator for the process. In the first step, we need to find the
probability to obtain an outcome from the input states |HH 〉, |HV 〉, |V H 〉 and |V V 〉
(success probabilities). They could be inferred directly from the observed count rate, but
as we cannot be sure that the rate of created photon pairs was constant over the mea-
surement time, we obtain these probabilities from the diagonal elements of the output
density matrices as described on page 59 (example in equation 4.35): We express the four
diagonal elements of 16 general output density matrices in terms of the 4 success proba-
bilities. Then, these expressions are fitted to the diagonal elements of the experimentally
obtained output density matrices via a least square fit. From this we obtain the following
success probabilities:

pHH = 0.111 pHV = 0.136 pV H = 0.110 pV V = 0.228 (5.22)

The difference between the values of the 64 fitted diagonal elements predicted with
these probabilities and the experimentally obtained ones is on average 0.00 ± 0.04. It is
clearly visible that the success probability of |V V 〉 is enhanced, as expected for partially
distinguishable photons (see discussion of V V -noise in section 5.2, page 70). An additional
observation is that the value for |HV 〉 is also higher. This cannot be attributed to the
imperfect interference but rather to phase gate parameters – a point that will be discussed
in more detail later.

Knowing the success probabilities in the computational basis, we can now determine
(equation 4.34) the unphysical process matrix (χData) obtained directly from the measure-
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Figure 5.6: Matrix a) is the representation of the process (χIP ) predicted by the model
with the phase gate parameters and perfectly indistinguishable photons. An ideal phase
gate matrix with success probability 1/9 is visualized in b). The differences between these
matrices are shown as density plot in d) for better comparison. Matrix c) shows the differ-
ences between the process achieved from the fitted model with the experimental and with
perfect indistinguishability of the input photons.

ment data (figure 5.5 a). Further, by fitting the model (section 5.1) to this operator, we
obtain a physical process matrix (χFit, figure 5.5 b). Here, the basic set of transformations
for representation are the Pauli matrices, Ei ∈ {11, σ̂z, σ̂x, σ̂y}, which are represented by
{11, Z, X, Y } in the figures. The discussion of this result is conducted in three steps: First,
we can compare the parameters obtained from the fit with the independently determined
ones. Then, the validity of the fitted model will be discussed. Finally, a comparison
between the operation induced by the experimental and an ideal phase gate will be dis-
cussed.

The free parameters in the model consist of the variables in the four conditions equa-
tion 5.1.3 and the quality factor quantifying the indistinguishability of the photons in
equation 5.6. For simplicity we assume for PDBSO additionally the reflection of the
horizontal polarization to be negligible (i.e. condition 1. as fulfilled) and the parameters
in both modes to be equal. Then we obtain, by fitting the model to the experimental
superoperator, the quality factor QFit = 0.904, which is comparable with the value found
in the HOM-experiment (figure 5.3) of 0.91 ± 0.009. Further, we find for condition 2.)
T 2

V /R2
V = 2.035 from the fit, which is comparable with the value of 2.019 ± 0.003 deter-

mined in the characterization of PDBSO. Conditions 3.) and 4.) concern the alignment
of PDBSa and PDBSb (see explanations of conditions page 66). In mode a we find
aV TV = 1.0 · aHTH , which means that the alignment of PDBSa is completely correct,
as perfect polarization conservation is also predicted by the fit. In mode b a significant
deviation from the expected ratio is observed: bV TV = 1.16 · bHTH . The reason for this
deviation could not yet be clarified, but is qualitatively consistent with the observation of
the increased success probability of pHV (see 5.22).
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A comparison between the measured and the fitted superoperators (figure 5.5) shows
that a good agreement is achieved, despite of the few degrees of freedom used in the model.
The major difference is the missing noise on the unexpected events, which is partly caused
by errors due to counting statistics, whereas the model does not include any effects that
might cause these contributions. In order to allow for a better comparison, the difference
between χData and χFit is visualized in figure 5.6 c) as density plot. There is no obvious
structure in the plot, values are between -0.005 and +0.005. The noise is thus homo-
geneous and the differences on the high peaks deviate as much between the fitted and
the unfitted version as all other contributions. This demonstrates that the fitted physical
superoperator reproduces the physical process quite well. To further compare the predic-
tions of the fit with the experimental data, we calculate the measurement outcomes for
the input states in table 5.1 and compare those with the measured data: The fidelities
between the measured and the calculated matrix is on average F exp

mod = 96.6±1.7%, demon-
strating a good agreement. The most relevant examples, i.e. the ones where entanglement
is introduced, are discussed in more detail in the next section. Thus, we can reproduce
the experiment with our model and the parameters obtained from the fit or independent
measurements quite well. To study one possible explanation for the remaining deviations,
white noise was included in an alternative model. This did, however, not change this
results significantly. Other possible sources of of noise are higher order emissions of the
SPDC photon source and counting statistics.

Let us now turn to the question, how well the experimental gate reproduces an ideal
probabilistic phase gate (χIdeal, figure 5.6 b). The characteristic peaks are clearly visible
in both, χData (figure 5.5 a) and χFit (figure 5.5 b). The height of the diagonal elements is
not equal, in contrast to the ideal gate. The biggest change, however, are the reduced off-
diagonal elements compared to χIdeal. This is made more visible in figure 5.5 d) where the
difference between χData and χIdeal is shown. The reduction of these off-diagonal elements
shows a loss of coherence in the output states, which can be attributed to distinguishability
of photons. However, as we have seen, also the gate components introduce some errors.

One big advantage of fitting the model we used is, in comparison to the usual proce-
dure of fitting a general physical process matrix (e.g. [169, 180]), that we can vary gate
parameters. To investigate the errors that result only from the gate components, the
operation obtained when the photons are completely indistinguishable is calculated (χIP ,
figure 5.6 a). Here, the off-diagonal elements are higher showing that the coherence is
increased in comparison to χFit. In addition, the diagonal peak corresponding to the
operation 11 ⊗ 11 decreased. These changes are better visible in figure 5.6 c) where the
difference between the two model process matrices is depicted. The resulting operator
is very similar to χIdeal. The remaining differences are caused by gate components and
are made more visible in figure 5.6 d) where the differences between χIdeal and χIP are
shown.

The tool of choice to quantify the quality with which the process matrices reproduces
an ideal phase gate is the process fidelity (see section 4.3.4, [44]). The measured process
matrix has a fidelity of:

FData = 81.6%,

the fitted process matrix has a slightly higher fidelity:

FFit = 84.6%.
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The increase can mostly be attributed to the non-existence of the noise in the unexpected
contributions. This can be seen by cutting these contributions in χData (everything smaller
that 0.1) which results in a fidelity of 84.1%. Finally, when we assume perfectly indistin-
guishable photons, the fidelity is almost perfect:

FIP = 98.8%.

The two similar values for FData and FFit show once more the agreement between the
model and the real process. As we can see, the fidelity is drastically increased when the
photons are indistinguishable, identifying this imperfection as the most important source
of errors. In contrast, the quality of the components has a minor influence, which is in
agreement with a similar analysis conducted for the previous version of a phase gate [41].

5.3.2 Entangling capability of the gate

A point of major importance concerning the analysis of quantum gates is the capability
of the gate to entangle separable states. Even more so, as we use the gate to entangle two
Bell states in order to obtain a Cluster state (chapter 6). But also in other publications
where a quantum gate is demonstrated, this part of the analysis usually constitutes an
important step [43, 44, 135, 175, 176, 178, 180]. Thus, it allows the comparison of different
implementations of two-qubit gates.

In this context we can ask, on the one hand, how strongly different separable states
become entangled, on the other hand, what is the best entanglement we can achieve.
The latter is called entanglement capability [167]. In either case, different entanglement
measures can be used for quantification. In the bipartite case, the most common and
at the same time most easily calculable ones are the concurrence and the logarithmic
negativity, which were introduced in the previous section. Both measures will be applied
in the following. In analogy to the analysis of the process itself presented in section 5.3.1,
three aspects are analyzed: The entanglement of the directly measured states and the
entanglement of the output states predicted by the model with all fit parameters and
with the quality factor set to Q = 1, i.e., assuming indistinguishable photons. Only our
complete knowledge of the process allows to determine the entanglement capability, as it
is the maximally achievable entanglement for all input states, not only for a tomographic
set.

A phase gate operation creates entanglement whenever two separable input qubits are
superpositions of |H 〉 and |V 〉. For example, with a state that is a tensor product of
|+ 〉 and an unequal superposition of horizonal and vertical polarization given by
|ψ(θ) 〉 = (cos(θ) |H 〉+ sin(θ) |V 〉), we obtain with the operation CP the state:

|+ 〉 ⊗ |ψ(θ) 〉 = 1/
√

2 (cos(θ) |HH 〉+ sin(θ) |HV 〉+ cos(θ) |V H 〉+ sin(θ) |V V 〉)
CP→ 1/

√
2 (cos(θ) |HH 〉+ sin(θ) |HV 〉+ cos(θ) |V H 〉 − sin(θ) |V V 〉)

= (H⊗ 11)(cos(θ) |HH 〉+ sin(θ) |V V 〉). (5.23)

Thus, the result is an entangled state for θ 6= 0. The strength of entanglement is dependent
on θ. Its dependence for the logarithmic negativity (solid line) and the concurrence
(dashed line) can be seen as the blue curve in figure 5.7 b), with a maximum at θ = π/2.
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Figure 5.7: Entanglement capability of the controlled phase gate. In a), the entangled
state obtained after action of the experimental phase gate on the input state |++ 〉 is shown.
In b), a plot of the logarithmic negativity and concurrence of the output states for input
states |ψ(θ) 〉 for three different situations is depicted: The gate obtained by the fitted
model (red), the model with the fitted parameters but indistinguishable photons (green),
and the operation of an ideal phase gate (blue). The experimental results for logarithmic
negativity (concurrence) are withing the filled (open) box.

Note that for the ideal gate and for the model this result does not depend on the phase
between |H 〉 and |V 〉 (i.e. it is also valid for e.g. |L 〉 instead of |+ 〉 in the first qubit).

Experimentally, we analyze the output density matrices obtained for all combinations of
input states |L 〉 and |+ 〉. They would all lead to maximally entangled states in an ideal
phase gate. Separable input states can be prepared very well from the SPDC emission
using polarizers and waveplates. In particular separability is then guaranteed, which
is an important precondition for testing the increase of entanglement due to the gate.
Exemplarily, the real part of the output density matrix for the input state |+ 〉 ⊗ |+ 〉 is
shown in figure 5.7 a). The phase introduced by the gate is responsible for the off-diagonal
terms that are negative due to the π-phase shift. The enhanced | V V 〉〈V V |-term is
caused by the incoherent V V -noise that was discussed in section 5.2. The fidelity to the
expected state is F = 80.4 ± 0.5%. The entanglement of the observed state in terms of
the logarithmic negativity and concurrence is ElN = 0.745±0.007 and C = 0.731±0.007.
The range where the entanglement lies for all experimentally observed states is depicted
as boxes in figure 5.7 b) at π/2, where the filled box represents logarithmic negativity and
the open one concurrence.

With process matrix χFit obtained from our phase gate model in the last section, we can
now estimate the entanglement that is achieved for every state |ψ(θ) 〉. The corresponding
functions are shown in figure 5.7 b) as red lines, where ElN (θ) is the solid and C(θ) the
dashed curve. The predicted curves reach values at π/2 that are in the upper region of
what is observed in the measurement: ElN (π/2) = 0.770 and C(π/2) = 0.794.

The dependences show that there are two effects leading to reduced entanglement in the
observed states. The curves’ maximum is reduced and shifted to a different angle θ in com-
parison with an ideal phase gate. Thus, the measured values are not corresponding to the
entanglement capability of the gate. The maximally achievable entanglement predicted by
the model is in terms of the two measures: ElN (0.385π) = 0.815 and C(0.409π) = 0.827.
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This can be explained by looking at the curve obtained from indistinguishable photons:
The red curves show the prediction of the model calculation when perfect indistinguisha-

bility of the interfering photons is assumed. The maximum of the curves is still not at
θ = π/2, but reaches almost the value of one: ElN (0.436π) = 0.999 and C(0.436π) = 0.998
Thus, we can conclude that the shift of the maximum can be attributed to imperfections
in the optical components in the gate. The reduced entanglement capability can almost
totally be attributed to partial distinguishability of the photons.

5.4 Summary

In this chapter, the scheme, experimental implementation and analysis of a new type
of linear optics controlled phase gate was presented. The design is simple and has, in
comparison to previous experiments, the advantage of a high degree of stability. Thus, it
opens the possibility to be used as a tool in multiphoton experiments.

The experimental phase gate reproduces the characteristic transformations expected
for an ideal controlled phase gate very well. The fidelity of the process is 81.6%. An
elaborate model of the gate revealed the major source of error, which is an admixture
of incoherent separable noise of vertically polarized photon pairs. This is caused by the
distinguishability of the photons used in the analysis of the gate. Without this effect we
expect a process fidelity of 98.8%, showing that imperfections in the gates components
play a minor role (in agreement with the analysis of a similar gate, [41]).

Further, the gate exhibits a high capability to entangle separable states. We could
demonstrate this experimentally detecting entangled states with a logarithmic negativity
of ElN = 0.745 and a concurrence of C = 0.731. Using our model calculation it was
possible to show that the gates capability to entangle is basically solely reduced by the
incoherent noise stemming from partially distinguishable photons.

Thus, the present gate reaches, despite of the simplification of the experimental setup,
a similar quality as previous versions of quantum gates that were harder to implement.
Our experimental analysis showed that further improvements should mainly focus on
better indistinguishability of the photons, in particular concerning the gates entangling
capability. Yet, the gate operation is achieved in such good quality and long term stability
with the present photon source that it can be utilized in a multiphoton experiment, as
presented in the next chapter.
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This chapter describes the experimental observation and analysis of the four-photon en-
tangled cluster state. We obtain the state by entangling two Bell states created in type-II
SPDC using the controlled phase gate presented in the previous chapter. A combination
of these techniques becomes possible only due to the high stability of the phase gate.

We give a detailed analysis of the entanglement properties of the observed quantum
state, particularly in comparison with the ideally expected cluster state |C4 〉. Hereby, we
rely completely on the efficient non-tomographic methods, which were presented in chap-
ter 4. First, general properties of the state, i.e., its four-qubit entanglement, symmetry
and local entropy are studied. Then, the entanglement in three- and two-qubit subsets
after projective measurements on, or loss of photons is investigated. At this point, differ-
ences and similarities with the GHZ4 state, which is the only other four-qubit graph state,
become particularly obvious. The significance of the experimentally obtained results for
an application of the state in multiparty quantum communication.

6.1 Experimental setup

According to the construction rules of graph states [79], we can obtain a four qubit cluster
state by entangling two photons from two different two-qubit cluster states, respectively.
Bipartite cluster states are, up to local unitary operations, Bell states, which can be cre-
ated directly via SPDC. Entanglement between these pairs is obtained with the controlled
phase gate presented in chapter 5, according to the following scheme:

The experimental setup is shown in figure 6.1 and will be described in the following.
We use a non-collinear SPDC source (section 4.1.1) in double pass configuration, in order
to create, with a certain probability, two independent photon pairs from the same pulse.
A first pair of photons can be created when the UV pump pulse passes the BBO crystal
the first time (forward direction). A mirror reflects the beam back and a second pair of
photons can be created (backward direction). The pump beam needs to be collimated
into the crystal in order to obtain a good collection efficiency of the created photons into
single mode fibers that serve as spatial mode filters. Its Rayleigh length is about 40 cm.
Thus, by using a flat UV mirror for the back reflection in a distance of about 3 cm from the
crystal, we achieve a quasi collimated beam for both SPDC processes. The resulting count
rate and entanglement quality of the two SPDC emissions is comparable. The emission
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Figure 6.1: Experimental setup for the demonstration of the four-photon polarization-
entangled cluster state. Two entangled photon pairs originate from type II SPDC by
pumping a β-Barium Borate (BBO) crystal in a double pass configuration and are collected
by single mode fibers (SM). The cluster state is observed after entangling the two EPR-pairs
via a linear optics controlled phase gate (chapter 5). Spectral filters (F) in modes b and c
have 2 nm bandwidth and 3 nm in modes a and d. Half- and quarter wave plates (HWP,
QWP) together with polarizing beam splitters (PBS) are used for the polarization analysis.

angle between signal and idler photons are approximately 6 ◦. Therefore they do not hit
the 0.3 cm broad UV-mirror in forward direction.

The two SPDC emissions occur with a small delay due to the time difference between
the pump beams first and the second passage through of the crystal. This delay has to be
compensated, because the photons need to arrive at the same time at the overlap beam
splitter in the controlled phase gate. Most of the delay is compensated by a difference in
the length of the fibers that guide the photons to the linear optics setup. The remaining
fine adjustment is done via the translation stage at one fiber coupler of the phase gate.

Further, we use stress induced birefringence in the fibers to transform the SPDC emis-
sions to the states |φ+ 〉, as this state cannot be directly created in our type-II SPDC
configuration. For spectral filtering we use 3 nm bandwidth interference filters in the spa-
tial modes of photons that are not processed any further (a and d). In the phase gate
setup (modes b and c) we use 2 nm interference filters to increase the quality of the second
order interference.

The fine adjustment of the time of arrival of both photons at the overlap beam splitter
in the phase gate is, like in section 5.2, achieved by an HOM-type experiment. Here,
the difference is that the interfering photons are created in two different down conversion
processes, i.e., in the first and second pass of one pump pulse through the BBO-crystal
(figure 6.1). Interference occurs when two vertically polarized photons are overlapped in
the phase gate, i.e., when we detect a vertically polarized photon pair in modes {a, b} and
{c, d} in coincidence. Figure 6.2 shows the dependence of this four-fold VVVV-coincidence
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Figure 6.2: Four-photon Hong-Ou-Mandel interference at PDBSO with triggered verti-
cally polarized single photons from the two SPDC sources shown in figure 6.1.

count rate on the position of the translation stage, which is mounted in the phase gate
(see section 5.21). The position of the minimum of the gaussian curve is the position of
zero delay between the time of arrival of both photons. At this position, we observe the
cluster state with a count rate of about 2.5 four-fold coincidence counts per minute in a
typical measurement.

The visibility of the HOM-interference is V4
exp = 67.6± 3.2 % is slightly below the vis-

ibility of V2
exp = 72.8 ± 0.7%, which was achieved with a photon pair from the same

SPDC-process shown in figure 5.3. The four-fold visibility corresponds to a photon indis-
tinguishability ofQ4 = 84.5±4.0%. In chapter 5 we saw that the partial distinguishability
of photons in the phase gate causes an incoherent admixture of |V V 〉〈V V |, which was
called VV-noise (section 5.2, page 70). In complete analogy, this effect translates here to
an incoherent admixture of | V V V V 〉〈V V V V | to the cluster state, which is henceforth
referred to as V V V V -noise. This noise reduces, as we will see, the quality of the state.
It is visible in figure 6.2 as the difference between the V V V V -count rate in the minimum
and the 20%-level.

6.2 Experimental analysis

Several characteristic properties of the cluster state were presented in chapter 3. Exper-
imentally, different imperfections cause deviations of the observed from the ideal state,
thereby reducing its quality. The question is, whether the state changes its properties
due to these imperfections or not, i.e., whether it can still be used as the same kind of
quantum resource. Thus, it is necessary to analyze, in addition to a quantification of the
states fidelity, its properties, in particular when they can be associated with a certain
task.

To perform the analysis of the experimentally observed state we rely on the tools intro-
duced in the first three chapters. We use solely direct, non-tomographic methods instead

1The translation stage is here in the spatial mode b.
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6 The Cluster State

Figure 6.3: The red bars show four-
fold coincidence counts obtained during
two hours of measurement for the anal-
ysis of the observed cluster state in a)
ZZZZ-basis, b) XXZZ-basis, and c) ZZXX-
basis. The corresponding light gray bars
show the theoretically expected values for
an ideal cluster state with the same to-
tal count rates. The dark gray bars cor-
respond to the predicted count rates ob-
tained when taking the fitted phase gate
model operation (chapter 5) and higher or-
der emissions of the SPDC-source into ac-
count.

of estimating the complete density matrix. We apply the methods introduced in chapter 4
and take particular advantage of the fact that the state |C4 〉 is completely described by
the stabilizer formalism. The following analysis is structured in three parts: Characteristic
global properties of the state are tested including its local entropy and four-fold entan-
glement, which are important features of the corresponding entanglement class. Further,
the fidelity to the ideal state, estimation of entanglement measures and an analysis of
permutation symmetry are used to quantify its quality. In the second part, we focus on
connectedness in the cluster state, which is an important property for a representative of
graph states: it describes the best entanglement observed after projective measurements.
Here, the applicability of the observed state for quantum communication and one-way
quantum computation will be discussed, as well. Finally, the cluster state distinguishes
itself from the only other four-qubit graph state by its higher persistency of entanglement
against photon loss, which will be studied in the third part.

6.2.1 Global properties

Population and Coherence

As a first step, the experimentally observed state is analyzed in the computational basis
to study how well the characteristic four-term structure of |C4 〉 is reproduced. Further,
coherence between the observed terms is made visible by an analysis of the state in other
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measurement bases. In figure 6.3, the experimentally observed data for three measurement
bases are shown (red bars). For comparison, the expected outcome for an ideal state |C4 〉
obtained with the same total count rate is shown (light grey). Furthermore, the data is
compared to the results expected when we take the phase gate model with the quality
factor Q̂ = 84.5% and higher order emissions of the SPDC sources into account.

In the experiment, we clearly observe (figure 6.3 a) the four characteristic terms of the
state |C4 〉 in the computational basis: HHHH, HHV V , V V HH and V V V V . While
these contributions are ideally equally weighted, this is not the case for the observed
cluster state, which is consistent with the predictions of the model. The enhanced V V V V -
contribution is caused by the non-perfect indistinguishability of the photons at the overlap
beam splitter, which was also discussed in the context of the HOM-dip measurement
(section 6.1). In addition, we observe a slightly enhanced HHV V contribution, as a
result of the higher transmission of vertical compared to horizontal polarization in the
phase gate in mode c (section 5.3.1, page 73). Note that this effect is also responsible for
an additional increase of the term V V V V .

Coherence between these contributions is made visible by a study of the counting statis-
tics of the four-fold coincidences in other measurement bases. Exemplarily, two correlated
bases are shown in figure 6.3: In b), photons in mode a and b are analyzed in Z-basis and
in mode c and d in X-basis; vice versa in c). The four highest terms in each measurement
correspond to the only contributions expected for the ideal state |C4 〉 with equal weight-
ing. Experimentally and in agreement with the model calculation, these terms are most
strongly emphasized, but accompanied by two additional smaller terms. The four high
terms demonstrate the coherence between the contributions obtained in the computational
basis. The imperfect interference in the phase gate causes the additional detection of the
terms V V xx (b), or xxV V (c), respectively (where x = +/−).

All together a very good agreement between the measured data and the outcomes
expected with the model is found for the computational basis. For the two bases in
figure 6.3 b) and c) we find quantitatively still a good agreement with small deviations,
that are not explained by the model. In the analysis of the state fidelity this will be
further quantified.

Entanglement Detection

The state |C4 〉 is genuinely four-partite entangled. This is one of its most fundamental
properties and needs to be fulfilled by the experimentally prepared state, as well. Efficient
detection of genuine four-partite entanglement is possible, as presented in section 3.2.1,
via an entanglement witness for cluster states that is based on the stabilizer formalism.
The stabilizing operators that determine a cluster state (as discussed in section 3.2.1)
suffice, according to [106], to obtain an entanglement witness2:

WC4 := 3 · 11⊗4 − 1
2

(
σ̂z ⊗ σ̂z ⊗ 11⊗ 11 + 11⊗4

) (
11⊗ σ̂z ⊗ σ̂x ⊗ σ̂x + 11⊗4

)

− 1
2

(
σ̂x ⊗ σ̂x ⊗ σ̂z ⊗ 11 + 11⊗4

) (
11⊗ 11⊗ σ̂z ⊗ σ̂z + 11⊗4

)
, (6.1)

2Note that the example in section 3.2.1 (equations 3.13) is constructed for |Cl 〉 = (H⊗11⊗11⊗H) |C4 〉.
Therefore, those stabilizing operators differ from the ones used in the present witness by a Hadamard
transformation on the first and fourth qubit.
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Photon Entropy

a 0.99± 0.02
b 0.97± 0.02
c 0.96± 0.03
d 0.93± 0.03

Figure 6.4: Analysis of the local entropy in the cluster state. In the table on the right,
the local von Neumann entropy of all four photons are summarized. For the ideal state
|C4 〉, they have the maximum value of 1. Exemplarily, the corresponding single qubit
density matrices of the photons in modes a and d are depicted. The small matrices show
the imaginary parts.

with the optimal value of Tr(WC4 | C4 〉〈 C4 |) = −1. Two measurement settings are suffi-
cient to evaluate this witness, i.e., in the XXZZ- and ZZXX- basis. These are exactly the
measurements depicted in figure 6.3 b) and c). Out of these data we find experimentally
Tr(WC4ρC4) = −0.299 ± 0.050. Thus, the observed cluster state is indeed genuinely
four-photon entangled.

Local entropy

In section 3.1, it was discussed that several different families of genuine four-partite entan-
glement exist. The cluster state belongs to the first family, Gabcd, which is characterized
by maximal local entropy [24]. In the following, it will be studied how well this property
is reproduced by our state. To this end, single qubit density matrices after tracing out
three qubits are determined. This can be done for all qubits with only three measurement
settings (ZZZZ, XXXX and YYYY; see section 3.3.1). Here, however, the complete set
of data measured for the determination of the fidelity (see next section) is used instead.
The resulting density matrix for the photons in modes a and d are exemplarily depicted
in figure 6.4. As one can see, there is hardly any coherence left between the horizontal
and vertical part. The latter is slightly more emphasized, which can be explained by the
observed V V V V -noise (section 6.1). As measure of the local entropy we calculate the von
Neumann entropy (see section 2.3.2) of the single qubits, which becomes zero for pure
states and 1 for white noise. The resulting values for all four photons are summarized in
table 6.4. We indeed observe a local von Neumann entropy close to the maximal value of
1 for all qubits3.

It is important to note that mixed states in general cannot be easily connected with
the SLOCC-classification for pure states. Thus, the observation of maximal local entropy
alone is not a proof for a detection of a state in the SLOCC-family Gabcd. We have,
however, already shown that the state is genuinely four-partite entangled and several
other properties will follow. In this context, the maximal local entropy of the observed
state is a property which we require for a cluster state and which was indeed shown to be
fulfilled very well in the experiment.

3For pure states the von Neumann entropy is zero.
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operators correlation

(1) σ̂z⊗σ̂z⊗ 11⊗ 11 0.935± 0.037
(2) σ̂x⊗σ̂x⊗σ̂z⊗ 11 0.713± 0.044
(3) 11⊗σ̂z⊗σ̂x⊗σ̂x 0.638± 0.045
(4) 11⊗ 11⊗σ̂z⊗σ̂z 0.931± 0.036
(5) −σ̂y⊗σ̂y⊗σ̂z⊗ 11 0.679± 0.043
(6) σ̂z⊗ 11⊗σ̂x⊗σ̂x 0.707± 0.045
(7) σ̂z⊗σ̂z⊗σ̂z⊗σ̂z 0.931± 0.064
(8) σ̂x⊗σ̂y⊗σ̂y⊗σ̂x 0.729± 0.062
(9) σ̂x⊗σ̂x⊗ 11⊗σ̂z 0.673± 0.044

(10) −11⊗σ̂z⊗σ̂y⊗σ̂y 0.626± 0.067
(11) σ̂y⊗σ̂x⊗σ̂y⊗σ̂x 0.628± 0.066
(12) −σ̂y⊗σ̂y⊗ 11⊗σ̂z 0.690± 0.060
(13) −σ̂z⊗ 11⊗σ̂y⊗σ̂y 0.616± 0.067
(14) σ̂x⊗σ̂y⊗σ̂x⊗σ̂y 0.681± 0.066
(15) σ̂y⊗σ̂x⊗σ̂x⊗σ̂y 0.681± 0.064
(16) 11⊗ 11⊗ 11⊗ 11 1.000± 0.017

F C4 = 0.741± 0.013

Table 6.1: The expectation values of this stabilizer group are the characteristic correlations
of the state |C4 〉. In this table, the experimentally obtained values, which can be deduced
from nine measurement settings, are summarized. Their average value is the fidelity of the
observed to the ideal state F C4 .

Fidelity

In order to explicitly quantify how close the observed state is to |C4 〉, we need to employ
a distance measure. The most commonly used one is the fidelity (equation 2.18). It was
demonstrated before (equation 3.15) that it is sufficient to study expectation values of the
16 stabilizers of |C4 〉 to evaluate the fidelity. For the ideal state, these correlations are
perfect and at the same time the only standard bases where the state is correlated at all
– in that sense they are characteristic. The results of the corresponding correlation mea-
surements are summarized in table 6.1. Nine different measurement settings are sufficient
to evaluate these sixteen correlations and with them the fidelity, instead of 81 settings
that are needed for a complete state tomography.

The fidelity is simply the average value of these correlations and evaluates in our ex-
periment to F C4 = 74.1 ± 1.3%. The connection between the fidelity and the generic
entanglement witness allows an additional confirmation of genuine four-partite entangle-
ment of the state [106]:

Wg
C4 =

1
2

114− |C4 〉〈 C4 | (6.2)

Tr
[Wg

C4ρ
C4] =

1
2
− F C4 = −0.24± 0.013. (6.3)
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Thus, genuine four-partite entanglement is also detected with the fidelity, as it exceeds
the value of 1

2 by approximately 17 standard deviations.
There are several different influences that are responsible for a reduction of the exper-

imentally observed fidelity. As we have seen in chapter 5 the quality of the phase gate
operation is reduced by imperfect components on the one hand and partially distinguish-
able photons on the other. In addition to this, noise is caused by higher order emissions
from the SPDC sources. The model described in section 5.1.3 allows to calculate the
expected fidelity when exclusively imperfect linear optics components are taken into ac-
count: We find a fidelity F = 99.3% showing that this is only a minor contribution. If we
consider additionally the distinguishability of the overlapped photons, with the quality
factor determined in the HOM-measurement (figure 6.2) Q̂ = 84.5%, we find the major
reduction of the state quality down to F = 77.9%. A detailed calculation that takes
second order emission and imperfect detection efficiencies into account4 (based on the
SPDC parameters presented in table 4.1) reveals approximately 8% of additional noise
that causes the fidelity to drop further to a value of F = 74.7%. This is consistent with
the fidelity observed in the experiment. Altogether, it is thus the distinguishability of the
overlapped photons that causes the main reduction of state quality.

Apart from the interpretation of the fidelity as a distance measure, it is hard to draw
additional conclusions from this value. An obvious threshold that the observed state
should exceed is the maximal fidelity reached by the closest biseparable states of 0.5
(which we have fulfilled). Concerning applications of the state, it is advantageous to
calculate directly the relevant values, e.g. the maximal singlet fraction of the residual
bipartite state for quantum telecloning (section 3.3.2). The fidelity is, however, useful
for a comparison with other experiments. A four-qubit cluster state was observed in
experiments performed approximately simultaneously with ours as presented in [35] and
for its further application in [36, 38]. There, a fidelity of about 63% is reported. It is
important to note, however, that the linear optics setup used there achieves higher count
rates5. Thus, the present scheme has, in comparison, a lower efficiency, but achieves a
higher fidelity. Note that in [20] the observation of a six-photon cluster state is reported
with a fidelity F > 59%6. A value for the fidelity of the four-photon cluster state after
projection of two qubits is, however, not given there.

The knowledge of the fidelity can also be used to put a lower bound on the geometric
measure of entanglement (see section 2.3.4, equation 2.55, based on [72]), given that the
geometric measure of the ideal state is known. With the value for the geometric measure
of the cluster state (EG(C4) = 0.750) (table 3.2.3 and appendix A) we find:

EG(ρC4) ≥ 0.243± 0.013. (6.4)

As the value does not exceed any of the measures for the states given in table 3.2.3, we
cannot draw further conclusions for state discrimination. The possibility of determining
bounds on multipartite entanglement measures experimentally was developed only re-
cently. It can be expected that in the future, more experiments will use this tool and that

4For simplicity we assume equal detection efficiencies in all modes.
5Due to the different detection scheme we could not directly calculate the ratio between the count rates;

one can, however, estimate a ratio of approximately 12.
6The distance to the next biseparable state in the six-qubit case is, like for four qubits, 0.5.
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it provides a means for further comparison of experimentally observed quantum states,
even if they are of different kind or number of qubits. Note that lower bounds for other
measures of entanglement were found for the observed state [71], as well.

Symmetry

The state |C4 〉 is invariant under several permutations of qubits. In contrast to the
symmetric Dicke states or the GHZ4 state it is not symmetric under all permutations.
With respect to the three generators of the whole permutation group (Sbacd, Sabdc, Sacbd)
it is an eigenstate of the first two (section 3.3.1).

For the efficient examination of these symmetries in the experimentally observed state,
we follow the analysis method introduced in section 3.3.1. This results in the following
expectation values for the symmetry operators (where the theoretical values are shown in
parenthesis):

〈Sbacd〉 = 0.98± 0.07 (1.0)
〈Sacbd〉 = 0.62± 0.09 (0.5)
〈Sabdc〉 = 0.98± 0.08 (1.0)

We find that the permutation symmetry between the pairs a, b and c, d is indeed fulfilled
very well. However, the value Sacbd is higher than the theoretical one. This can be
attributed to the V V V V -noise (section 6.1, page 81): the noise is an admixture of the
state | V V V V 〉〈V V V V | which is symmetric under all permutations of qubits and thus
makes the resulting mixed state more symmetric with respect to Sacbd.

The symmetry properties of the cluster state, also turn out to be useful for its fur-
ther experimental analysis. They allow the generalization of results on persistency and
connectedness observed for one subset of qubits to other subsets. The following two
subsections concern this part of the experimental analysis.

6.2.2 Connectedness

As pointed out by Briegel et al. [81] and discussed in chapter 3, cluster states possess the
property of maximal connectedness: Projective measurements can be chosen such that
only the measured qubit is removed from the cluster state. The remaining qubits still form
a graph state independent of the measurement result. The following experiments demon-
strate that the experimentally prepared state indeed reproduces this property. Maximal
connectedness leads to an application of the state for open destination teleportation. The
performance of the experimental state for this quantum information protocol is estimated.

Three-qubit subsets

First, we calculate explicitly the states after projective measurements on |C4 〉. The
measurement basis suited to obtain maximal entanglement in the residual state is the
X-basis independent of the qubit to be measured (here we take exemplarily d):

|C±3 〉abc =d 〈+ |C4 〉abcd =
1√
2
( |HH±〉abc + |V V∓〉abc) (6.5)
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Qubit Projection
i P+

i P−
i

a −0.288± 0.093 −0.256± 0.084
b −0.543± 0.091 −0.277± 0.087
c −0.276± 0.091 −0.304± 0.083
d −0.362± 0.090 −0.392± 0.082

Table 6.2: Expectation values of the entanglement witnesses (equation 6.8) with the states
obtained after projection of the photons in all spatial modes i onto the states |+ 〉 and |− 〉,
respectively. Negative values prove the detection of genuine tripartite entanglement.

By permutation of qubits according to the symmetry of |C4 〉, we obtain the corresponding
states for projective measurements of the qubits in the modes a, b, c. The resulting states
are GHZ states independent of the measurement result, as can be seen by the following
LU transformations:

|C+
3 〉abc = − (11a ⊗ 11b ⊗Hc) |GHZ3 〉abc, (6.6)

|C−3 〉abc = − (11a ⊗ 11b ⊗ (σ̂z · H)c) |GHZ3 〉abc. (6.7)

The analysis of the three-photon states obtained with this operation is conducted in two
steps: We use a witness operator to test the entanglement after a projective measurement
on each of the photons. This is followed by a more detailed analysis of the GHZ state
obtained by the projective measurement on the photon in mode d.

As the expected state is also a Graph state, an efficient witness for the detection of
tripartite entanglement can be constructed using the stabilizer formalism [106]:

WC±abc
=

3
2
· 11⊗3 − σ̂x ⊗ σ̂x ⊗ σ̂z

− 1
2

(σ̂z ⊗ σ̂z ⊗ 11± σ̂z ⊗ 11⊗ σ̂x ± 11⊗ σ̂z ⊗ σ̂x) . (6.8)

Again, the witness operators for projection of other qubits can be obtained according to
the symmetry of |C4 〉. The expectation values can be determined with two measurement
settings only, which allows to easily test the entanglement for projections on every single
qubit. The results are summarized in table 6.2. Their negative values clearly prove genuine
tripartite entanglement for all of the obtained states.

These states are not only tripartite entangled, but are indeed GHZ states. How well this
is fulfilled for the observed state is, in the following, exemplarily investigated for the case of
a projection of the photon in mode d. To this end, we determine the stabilizer correlations.
This allows, in analogy to section 6.2.1, to derive the fidelity to the corresponding GHZ
state and a bound on the geometric measure of entanglement. The expectation values
observed for the GHZ states’ stabilizers are summarized in table 6.3. The fidelities are
determined as the average of their absolute values: F C+

3 = 0.756 ± 0.028 and F C−3 =
0.753± 0.026.
In order to strictly proof GHZ-type entanglement, the generic entanglement witness is an
appropriet tool [89, 92]:

WGHZ
C±3

=
3
4

11⊗3− |C±3 〉〈 C±3 | . (6.9)
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operators correlation after P+
d correlation after P+

d

(1) σ̂x⊗σ̂y⊗σ̂y 0.741± 0.088 −0.716± 0.088
(2) σ̂y⊗σ̂x⊗σ̂y −0.639± 0.098 0.617± 0.088
(3) σ̂y⊗σ̂y⊗σ̂z 0.692± 0.088 0.598± 0.086
(4) σ̂z⊗σ̂z⊗ 11 0.985± 0.094 0.948± 0.081
(5) σ̂z⊗ 11⊗σ̂x 0.661± 0.070 −0.744± 0.059
(6) 11⊗σ̂z⊗σ̂x 0.576± 0.065 −0.707± 0.061
(7) σ̂x⊗σ̂x⊗σ̂z 0.751± 0.090 0.693± 0.084
(8) 11⊗ 11⊗ 11 1.000± 0.035 1.000± 0.033

F C+
3 = 0.756± 0.028 F C−3 = 0.753± 0.026

Table 6.3: The expectation values of the present stabilizer group are the characteristic
correlations of the states |C±3 〉abc. In this table, the experimentally obtained values are
summarized. They were deduced from six measurement settings. The average absolute
values give the fidelities of the observed states to the ideal one: F C

±
3 .

The prefactor of 3
4 is necessary to exclude detection of W-type states (bisepa-

rability is excluded with 1
2). We find Tr

[
WGHZ
C+
3

ρC4abc

]
= −0.006 ± 0.028 and

Tr
[
WGHZ
C−3

ρC4abc

]
= −0.003± 0.026. Thus, the outcomes are only insignificantly negative

and we cannot conclusively prove detection of GHZ-type entanglement. Note that the
witness criterion is only sufficient and therefore even values greater than zero do not ex-
clude the precence of GHZ-type entanglement. It is likely that an entanglement witness
that accounts for the specific V V V V -noise (section 6.1) that is the main influence for the
distortion of our state may still detect GHZ-type entanglement in the state.

Further we use the fidelity to estimate a lower bound for the geometric measure of
entanglement:

EG(ρC
+
3

abc) ≥ 0.071± 0.017 (6.10)

EG(ρC
−
3

abc) ≥ 0.069± 0.015 (6.11)

The geometric measure of the ideal GHZ states is EG(C±3 ) = 0.5. Thus, the projective
measurement on one photon strongly reduces the geometric measure of entanglement
(remember EG(C4) = 0.75) for the ideal states causing the lower bound to drop almost to
zero. Note that the situation is very different for |D(2)

4 〉 in chapter 7.

Two-qubit subsets

For Cluster states, projective measurements on all except for two qubits can be performed
such that an entangled residual state is obtained with certainty. Note that from the
permutation symmetry of the state |C4 〉 one can conclude that these measurements can
be performed on two different types of qubit pairs: Either a pair that leaves the state
unchanged under permutation (pairs {a, b} or {c, d}) or a pair that does not (pairs {a, c},
{a, d}, {b, c}, and {b, d}). A maximally entangled bipartite residual state is obtained by
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Projection Residual State Fidelity Log. Negativity Concurrence

|HH 〉cd |φ+ 〉ab 96.3± 5.4% 0.959± 0.070 0.757± 0.057
|V V 〉cd |φ− 〉ab 77.2± 3.7% 0.629± 0.064 0.495± 0.037

|++ 〉bc (11⊗H) |φ+ 〉ad = (CP |++ 〉)ad 77.7± 3.1% 0.660± 0.051 0.503± 0.034
|+−〉bc (11⊗H) |ψ+ 〉ad = (CP |+−〉)ad 77.6± 2.9% 0.666± 0.048 0.562± 0.031
|−+ 〉bc (11⊗H) |φ− 〉ad = (CP |−+ 〉)ad 73.6± 3.1% 0.582± 0.055 0.425± 0.034
|−− 〉bc (11⊗H) |ψ− 〉ad = (CP |−− 〉)ad 80.3± 2.7% 0.720± 0.042 0.642± 0.030

Table 6.4: The states obtained after projection of two photons in |C4 〉 are shown. To ob-
tain entangled states, ZZ-basis measurements in modes c and d and XX-basis measurements
in modes b and c are performed. For their analysis, we used quantum state tomography
(see also figure 6.5) and summarize deduced values like the fidelity to the ideal states and
measures of the residing entanglement.

measurements in the Z-basis for the first case and by X-basis measurements for the second
one. We restrict ourself exemplarily to the pairs {c, d} and {b, c}, respectively. The states
obtained after the respective projective measurements are summarized in table 6.4. Note
that only two measurement results (parallel polarizations) can occur in the first case,
while in the latter, all four measurement results occur with equal probability.

We analyze the density matrices of the qubit pairs {a, b} and {a, d} after the described
projective measurements. To this end, a quantum state tomography of the resulting
bipartite states is performed. The fidelity is determined, which can also be viewed as
a lower bound on the maximal singlet fraction (FMSF ). Further, the density matrix
allows to retrieve the entanglement measures that were presented in section 2.3, i.e., the
concurrence and the negativity for the resulting states (table 6.4).

We observe strong entanglement between any of the resulting qubit pairs. There is
a significant difference between the two entangled states observed in the subset {a, b}.
The reason is clearly visible in figure 6.5. The V V V V -noise (section 6.1, page 81) is
responsible for a strongly exaggerated |V V 〉〈V V | peak in the matrix after projection on
|V V 〉 resulting in a strongly reduced quality of the entanglement (figure 6.5 b). The state
after projection on |HH 〉 is not at all affected by this (figure 6.5 a). In figure 6.5 c),
one example for the subset {a, d} is shown (projection P++

b,c ). Here, the influence of
the V V V V -noise is not dependent on the measurement result. This kind of projective
measurement is the implementation of a measurment based phase gate operation, where
(see table 6.4) the state of qubits {a, d} after the projection corresponds to the gate
output states (for more details see [172]). This should not be confused with the phase
gate operation that was implemented directly in 5, where the gate acts directly on the
qubits. Here, in contrast, the gate operation is intrinsic to the entanglement of the cluster
state and the entangled output photons were created in different processes and have
never interacted (see further [171]). This also explains why the entanglement observed in
section 5.3.2 is slightly better.

It was explained in section 3.3.3 that maximally connected states can be used for de-
terministic open destination teleportation. As we can deterministically obtain entangled
bipartite states between any pair of parties in the cluster state, this state is as well suited
for this task as the GHZ state. Due to the different permutation symmetry, however,
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Figure 6.5: Real part of entangled states obtained after projective measurements on two
photons of the observed cluster state. Projection of qubits c and d onto |HH 〉 and |V V 〉
are shown in a) and b), respectively. In b) the admixture of |V V 〉 due to incoherent noise
is clearly visible. In c) the state after a projection of qubits b and c onto |++ 〉 is depicted
as one example with the four possible outcomes for this measurement setting. Noise on real
and imaginary parts are comparable for all matrices.

the projective measurements have to be adapted to the pair of parties chosen for the
teleportation. Using equation 2.38 (page 16) one can conclude that the observed state
allows open destination teleportation fidelities (averaged over all input states) between
86.8 ± 1.5% and 98.2 ± 2.7% (using equation 2.38), in all cases strongly exceeding the
classical limit of Fclass = 2/3 (see section 2.2.4). These values are achieved assuming a
perfect Bell state analysis and a single photon as input state.

In summary, it was demonstrated in this section that projective measurements of the
experimentally observed cluster state indeed allow for the preparation of highly entangled
states in a lower number of qubits. That is, explicitly, GHZ states of three qubits and Bell
pairs of two qubits. The latter observation shows that open destination teleportation far
beyond the classical limit is possible with the observed state. In the following, the results
will be discussed in the light of one-way quantum computation.

6.2.3 Persistency against photon loss

It is a major difference between the cluster and the GHZ states that, in comparison, the
entanglement of the latter is much more fragile against photon loss [81] (see section 3.2.1).
This persistency of entanglement in the four-photon cluster state is, however, restricted
to the loss of a single photon, in contrast to the persistency of the symmetric Dicke states.
This will be explored experimentally in the following by first studying residual three- and
then two-qubit subsets of the state after photon loss.

Three-qubit subsets

The state after loss of a single photon (exemplarily in mode d) is:

ρC4d = Trd

[ |C4 〉〈 C4 |
]

=
1
2

(|φ+H 〉〈φ+H | + |φ−V 〉〈φ−V |) , (6.12)

where |φ+H 〉 = |φ+ 〉 ⊗ |H 〉 and |φ−V 〉 = |φ− 〉 ⊗ |V 〉. This state is the mixture of
two states of the form |AB 〉 |C 〉. Thus, no genuine tripartite entanglement is present
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6 The Cluster State

Mode i 〈W
ρ
C4
i

〉

a −0.570± 0.057
b −0.639± 0.058
c −0.609± 0.058
d −0.648± 0.057

Table 6.5: Expectation values of three-qubit entanglement witness. The negative values
prove entanglement in the residual state after loss of one qubit from |C4 〉.

anymore. The pair AB of photons, however, contains the entanglement that survived the
measurement on photon d. It can be verified by a type of witness that was constructed
to detect entanglement in subsets of up to four qubits that are part of a cluster state
[105, 130]:

W
ρ
C4
d

= 11⊗3 − σ̂z ⊗ σ̂z ⊗ 11− σ̂x ⊗ σ̂x ⊗ σ̂z, (6.13)

where the witnesses for loss of the other qubits can simply be derived by permutation
of the qubits according to the symmetry of |C4 〉. The fact that only two settings are
necessary allowed to easily study all four three-qubit subsets. The experimentally ob-
tained expectation values are summarized in table 6.5. The negative values clearly prove
that entanglement in the state after loss of one qubit is present and therefore verify the
entanglement persistency in the observed cluster state.

Two-qubit subsets

For the study of the entanglement after loss of a second qubit we take again advantage
of the symmetry properties of the observed and the ideal cluster state. As before, we
distinguish two different cases: Loss of a pair of qubits that can ({a, b}, {c, d}) or cannot
({a, c}, {a, d}, {b, c}, {b, d}) be permuted without changing the state.

Consider the loss of a second qubit from the state in equation 6.12, for example from
modes a or c:

Trcd

[ |C4 〉〈 C4 |
]

= Trc

[
1
2

(|φ+H 〉〈φ+H | + |φ−V 〉〈φ−V |)
]

(6.14)

=
1
2

(|φ+ 〉〈φ+ | + |φ− 〉〈φ− |) =
1
2

(|HH 〉〈HH | + |V V 〉〈V V |) ,

T rbd

[ |C4 〉〈 C4 |
]

= Trb

[
1
2

(|φ+H 〉〈φ+H | + |φ−V 〉〈φ−V |)
]

=
1
2

(
11
2
⊗ |H 〉〈H | +11

2
⊗ |V 〉〈V |

)
=

11⊗2

4

The latter case is not very surprising: The loss of one photon from the entangled pair in
the residual state of equation 6.15 results in complete disentanglement. The first case is,
however, more instructive. The loss of the qubit that is not entangled with the others
leads also to complete disentanglement. This is one of the puzzling features of mixed state
entanglement. Here, the loss of classical correlation between the third qubit and the Bell
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Figure 6.6: Real part of entangled states after loss of the photons in modes b, c and c, d
are depicted in a) and b), respectively. Two different kinds of noise are obtained: strongly
classically correlated noise in a) and approximately white noise in b).

state present in the entangled pair leads to mixing of the respective Bell states and thus
to complete cancellation of coherence.

In order to study the loss of entanglement for the bipartite states experimentally, we
cannot rely on tools like entanglement witnesses. The reason is that a positive expectation
value of an entanglement witness is only a necessary, but not sufficient criterion for a state
to be separable (see section 2.3.4). Instead, the tool of choice here is the Peres-Horodecki
criterion, as it is necessary and sufficient in the two-qubit case. For the two different
types of qubit pairs existing due to the symmetry of the cluster state (equation 6.14 and
equation 6.15) we study exemplarily remaining states in the pairs {a, b} and {a, c}. Note
that we can expect similar results for pairs that are obtained by permuting the indices
with Sbacd and Sabdc, as these symmetries were shown to be fulfilled very well in the
experiment.

Two independent measurements give the density matrices of the respective photon pairs:
ρC4ab and ρC4bc . Their real parts are shown in figure 6.2.3, (the imaginary parts are negligible).
In a) the correlated noise (equation 6.14) is clearly visible and hardly any coherence is left.
The smallest eigenvalue of the partially transposed matrix (PTM) is λmin = −0.024±0.028
and therefore consistent with the theoretical value of 0, demonstrating that the residual
state contains virtually no entanglement. In b) completely white noise was expected
(equation 6.14). Experimentally we still see a slightly enhanced V V contribution which
is explainable by the V V V V -noise (section 6.1). Further, there is a not clarified HH
enhancement. Important, that hardly any coherence is left between any of the populations
(the imaginary part is negligible, except for one entry of 0.067). For this state, we can
conclusively prove that the state is indeed disentangled: The smallest eigenvalue of the
PTM is λmin = 0.159± 0.011 (theoretically 0.25).

6.3 Summary

In conclusion, a setup for the experimental observation of a four-photon cluster state was
presented, followed by a detailed analysis of the obtained quantum state conducted solely
with efficient, non-tomographic tools. Thereby, it was possible to show that the observed
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state exhibits qualitatively the same properties as the state |C4 〉. A quantitative model
that accounts for the known imperfections of the controlled phase gate and for higher
order emissions of the SPDC sources showed good agreement with the experimental data
and allows a detailed explanation of the deviations from the ideal state. The major source
of noise is thereby caused by imperfect interference in the controlled phase gate, resulting
in an admixture of the state |V V V V 〉〈V V V V |.

In the experiment, a fidelity of the observed state to |C4 〉 of 74.1±1.3% is obtained. The
close relation to the SLOCC-family Gabcd was demonstrated by the detection of high local
von Neumann entropies and genuine four-partite entanglement in the state. The cluster
state exhibits, in contrast to the other four-qubit graph state |GHZ4 〉, persistency against
the loss of one qubit (but not two) [33], which could also be verified experimentally. In
the first case, bipartite entanglement can be detected, while it has disapeared in the lat-
ter. As a graph state, the cluster state is further characterized by a high connectedness,
i.e. entanglement of all qubits after certain projective measurements. This property is
also present in the experiment: Firstly, genuine tripartite entanglement after projection
of one photon was detected via entanglement witnesses for the remaining groups of three
photons; a more detailed analysis in one case results in a fidelity of about 75% to the GHZ
state, which is just at the border to prove that the entanglement is indeed GHZ3-type. An
entanglement witness that is better tailored to our specfic noise (V V V V -noise) might be
able to give a conclusive proof. Also two projective measurements leave the remaining two
pairs of photons in highly entangled states, where the detected Bell state depends on the
measurement result (which is in contrast to what we observe for |D(2)

4 〉 in the next chap-
ter). As the observed state was shown to exhibit almost the same permutation symmetry
as |C4 〉, similar results can be expected for other residual photon pairs. With these results
we could conclude the feasibility of non-classical open destination teleportation with the
experimental cluster state as resource.
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7 The symmetric Dicke state with two
excitations

In the following chapter, the first experimental observation and analysis of the symmetric
Dicke state with two excitations |D(2)

4 〉 is presented. The experimental setup is inspired
by the symmetry of the state under all permutations of qubits: It relies on the symmetric
distribution of four photons, which are created via collinear SPDC, onto four spatial
modes. The setup allows to observe the state |D(2)

4 〉 without any additional interference
effects, which is an advantage for its stability and thus for the quality of the observed
state.

With the count rates achieved, it is possible to obtain a complete tomographic set of
measurement data and to derive the experimentally observed state’s density matrix. This
allows to directly compare the observed with the ideal state and ensures that any quantity
characterizing the state is in principle calculable. For the further characterization, we rely,
in analogy to the last chapter, completely on efficient, non-tomographic tools1. Thus, the
obtained results can, in general, be deduced from smaller sets of measurement data, and
in addition, comparability between the results deduced for the two observed quantum
states is ensured.

We investigate general properties of the observed state, i.e. genuine four-qubit entan-
glement, local entropy and permutation symmetry. Further, we focus on the analysis of
tri- and bipartite states after projection or loss of photons. Especially here, differences to
other quantum states can be found: It will be shown that |D(2)

4 〉 has a higher persistency
against loss of photons than the cluster state in the sense that even after loss of two qubits
entanglement is observed. The quantitative analysis of the latter also serves to delimit
the observed state from W4-states. It will further be demonstrated that, depending on
the orientation of the measurement on one photon, the remaining photons are projected
to the two SLOCC-inequivalent classes of genuine tripartite entanglement, i.e. the GHZ3-
and W3 classes. Finally, the applicability of the experimental state as resource in quantum
communication protocols is discussed.

7.1 Experimental setup

The symmetric Dicke state with two excitations |D(2)
4 〉 is a superposition of the six

possibilities to distribute two horizontally and two vertically polarized photons onto four
modes:

|D(2)
4 〉 =

√
1
6
( |HHV V 〉+ |HV HV 〉+ |HV V H 〉+ |V HHV 〉+ |V HV H 〉+ |V V HH 〉).

(7.1)
1In contrast to evaluating the data from a fitted physical density matrix; see the discussion in section 4.3.4.
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7 The symmetric Dicke state with two excitations

Figure 7.1: Experimental setup for the observation of the four-photon polarization-
entangled state |D(2)

4 〉. It is detected after the symmetric distribution of four photons
onto spatial modes a, b, c, and d via non-polarizing beam splitters (BS). The photons
are obtained from type-II collinear spontaneous parametric down conversion (SPDC) in a
2 mm β-Barium Borate (BBO) crystal pumped by 600 mW UV-pulses. The phases between
the four output modes are set via pairs of birefringent Yttrium-Vanadate-crystals (YVO4).
Half- and quarter-wave plates (HWP, QWP) together with polarizing beam splitters (PBS)
are used for the polarization analysis.

Thus, we create for its observation four indistinguishable photons in one spatial mode,
two are horizontally and two vertically polarized, and distribute them with polarization
independent beam splitters (BS) onto four modes (figure 7.1) [181]. If one photon is
detected in each of the four output modes, we observe the state |D(2)

4 〉.
As photon source, we use the collinear type-II SPDC as described in section 4.1.1. It

creates probabilistically, in second order emission, the desired four photons with appro-
priate polarizations. In order to separate the emission at 780 nm from the 390 nm pump
beam, we use two dichroic UV-mirrors at an angle of incidence of 180 ◦ and a transmit-
tivity at IR of about 99%. A half-wave plate together with a 1 mm thick BBO crystal
compensate for walk-off effects. We exactly define the spatial mode by coupling the four
photons into a single mode fiber. Spectral filtering is achieved with one interference filter
(∆λ = 3 nm) at the fiber output. In order to split the four photons we use the type of
polarization independent BSs that were introduced in section 4.2. With their polarization
independent but unequal ratio between transmission T and reflection R of T/R ≈ 1.5 we
achieve a probability to distribute four photons onto four spatial modes of:

(
4
2

)
T 2R2 · (2TR)2 = 24T 4R4 ≈ 7.96%. (7.2)

For the ideal splitting ratio of T/R = 1 one would expect a probability of 9.38%. These
beam splitters also introduce undesired additional phases between horizonal and vertical
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polarization. To compensate the phases, we use strongly birefringent Yttrium-Vanadate
crystals (YV04) as phase shifters (see section 4.2.1). They are mounted with exchanged
fast and slow axes with respect to each other such that one crystal compensates dispersion
effects of the other.

With the presented setup we achieve a count rate of approximately 60 counts/min,
which is about a factor of 30 times higher than for the cluster state. The setup is stable
over several days. It is mainly limited by disalignment effects in the pump laser system,
which affects rather the count rate than the quality of the observed state.

7.2 Experimental analysis

The high count rate and stability allows to add one ingredient to the state analysis: It
allowed to obtain a complete tomographic set of measurement data in one run of 35 h
(for 81 measurement settings) and therefore to derive the density matrix of the observed
state (section 4.3.2). This ensures that any functional (e.g. entanglement measure) that
is developed for state characterization in the future can be calculated for our data. It was
discussed in section 4.3.2 that linear tomography often leads to unphysical density matrices
due to Poissonian counting statistics. This can be circumvented by fitting the data to
a general physical state, where there are still differing opinions on the right approach
for such optimizations. All values that we evaluate here can be calculated from the data
directly, where we take account for the statistical errors (which make the state unphysical)
with a proper error calculation, instead of deriving the values from a fitted physical density
matrix. In analogy to the evaluation of the cluster state in the last chapter we thereby
rely on non-tomographic tools where usually only a smaller part of the data is required.
This approach has the additional advantage of allowing a good comparability between the
observed cluster and Dicke state.

The analysis of the observed state is structured in three parts: Global properties of
the state are studied in the beginning. We use an efficient entanglement witness that
is based on the complete permutation symmetry of |D(2)

4 〉 to detect four-partite entan-
glement. Whether the symmetry properties are fulfilled in the observed state is further
studied explicitly with the methods presented in section 3.3.1. An analysis of the local
entropy makes the connection to the SLOCC-family of the state. The density matrix of
the state is derived and deviations from the expected matrix are discussed. These are
further quantified by the fidelity, which also allows conclusions on the geometric measure
of entanglement. In the second part, the connectedness of the observed Dicke state is an-
alyzed. Here, an interesting property of |D(2)

4 〉 arises: A single projective measurement
can be used to obtain a residual GHZ3-type or W3 state deterministically. Further, the
experimental state’s applicability for open destination teleportation from the point of view
of two-qubit connectedness is discussed. Finally, in the third part, the persistency against
photon loss is analyzed. As argued in section 3.2.2, Dicke states are in general highly per-
sistent against photon loss. We study this property for the experimentally observed state,
where a focus is put on the comparison with the four-qubit W4 state. Further, the related
issue of experimental applicability of the state for quantum telecloning is discussed.
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7 The symmetric Dicke state with two excitations

Figure 7.2: The red bars show four-fold
coincidence counts obtained during 25min
of measurement for the analysis of the ob-
served symmetric Dicke state in a) ZZZZ-
basis, b) XXXX-basis, and c) YYYY-
basis. The corresponding light gray bars
show the theoretically expected data for
an ideal Dicke state with the same count
rates. The dark gray bars correspond to
the count rates obtained with an ideal
linear optics setup, but taking higher or-
der emissions of the SPDC-source into ac-
count.

7.2.1 Global properties

Population and Coherence

The state |D(2)
4 〉 exhibits a characteristic six-term structure in the computational basis.

We first analyze the counting statistics we observe in this case experimentally. Then,
coherence between the different terms can be demonstrated by an analysis of the state in
the XXXX- and YYYY-basis, where the structure of |D(2)

4 〉 is dominated by GHZ-like
contributions (equation 3.24). In figure 7.2, the experimentally observed counting statis-
tics for these measurement bases are shown (red bars). For comparison, the outcome of an
ideal Dicke state with the same total count rate is depicted (light gray). Furthermore, the
simulated results for an ideal setup, when higher order emissions of the down conversion
are taken into account, is shown (dark gray).

Experimentally, the expected six term structure is clearly visible (figure 7.2 a). The
small, undesired contributions can be mainly attributed to noise from higher order emis-
sions of the SPDC-source, as a comparison with the simulated results reveals. The struc-
ture in the six peaks, where three terms are slightly stronger than the others could not
be conclusively explained, might, however, be caused by a not perfectly polarization in-
dependent beam splitter.

Coherence between the contributions are made visible by the counting statistics in the
XXXX- and Y Y Y Y -basis (figure 7.2 b) and c). The expected statistics is reproduced
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Qubit Entropy

a 0.999± 0.004
b 0.999± 0.004
c 0.999± 0.004
d 0.999± 0.004

Figure 7.3: Analysis of the local entropy in the observed symmetric Dicke state. On
the left, the single qubit density matrix of photon a is depicted, looking, apart from slight
coherence, like white noise. The table on the right shows the von Neumann entropy of the
four qubits, confirming that the single qubits are practically unpolarized – a signature of
entanglement if the whole state is not completely mixed.

very well for both bases (apart from the unexplained enhanced |RLLR 〉 contribution in
c). The small additional contributions can, as a comparison with the simulation shows,
be explained by higher order emission events of the source. Note that the measurement
in only one of these bases mimics a noisy GHZ4 state (as expected from equation 3.24).
This demonstrates that the mere similarity of two states in the counting statistics of one
measurement basis does not indicate similarity of the complete states, as the Dicke state
and the GHZ4 state exhibit, as we will see, extremely different properties.

Entanglement Detection

The state |D(2)
4 〉 is genuinely four-partite entangled. To test this property also for the

observed state, we use the symmetry based entanglement witness that was discussed in
section 3.2.2 (equation 3.17). It relies only on two collective, non-local operators, which
can be deduced from two measurement settings (section 3.2.2). In the four-qubit case,
the witness is [127, 128]:

〈Ws
4〉 = 〈J2

x〉+ 〈J2
y 〉 ≤ 7/2 +

√
3 ≈ 5.23, (7.3)

where |D(2)
4 〉 reaches the maximal value of 6. With the correlations of the measurements

presented in figure 7.2 we find:

Tr[Ws
4ρD

(2)
4 ] = 5.58± 0.02, (7.4)

which is exceeding the required bound by 17.5 standard deviations. Thus, also the ob-
served Dicke state was indeed detected as genuinely four-partite entangled.

Local Entropy

In section 3.1, we have seen that the state |D(2)
4 〉 belongs (like |C4 〉) to the SLOCC-family

Gabcd (equation 3.10), which is characterized by maximal local entropy [24]. To study the
local entropy in the experimentally observed state, the density matrix of a single photon
after tracing over the other three is calculated. Basically, the three measurements shown
in figure 7.2 are sufficient for this evaluation. We use, however, the complete set of data
that was obtained for the quantum state tomography. In figure 7.3, the real and imaginary
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7 The symmetric Dicke state with two excitations

Figure 7.4: Real part of the density matrix of the experimentally observed Dicke state (a).
Six characteristic terms are visible in the diagonal; the off-diagonal terms show coherence
between all populations. The ideally expected state |D(2)

4 〉 is shown in b). For better
comparison, a density plot of the difference between the density matrices is depicted in
c) (real part) and d) (imaginary part). The imaginary part of the ideal matrix is zero
everywhere.

part of the density matrix of the photon in mode a is depicted on the left side, showing
completely white noise. This observation is confirmed for all four qubits in the table on
the right, where the local von Neumann entropies of all four photons are shown. All von
Neumann entropies are consistent with the maximum value of one, demonstrating that the
property of maximal local entropy is practically perfectly fulfilled in the experimentally
observed state. Note that the other entangled symmetric Dicke state |W4 〉 does not
exhibit this property (single qubit von Neumann entropy: 0.81).

Quantum state tomography and fidelity

We are interested in a comparison between the observed state and the ideal state |D(2)
4 〉.

Their density matrices are depicted in figure 7.4 a) and b). The structure of these matrices
is basically the same: six terms in the diagonal and positive coherence between all of
them. In order to facilitate the comparison, density plots of the real (c) and imaginary
part (d) of the difference between the two matrices are shown. The noise that is visible
on the elements expected to be zero is mainly caused by higher order emissions, partly
also by imperfect compensation of the birefringence of fiber and beam splitters. Further,
a reduction of the off-diagonal elements is visible, which can be attributed to a loss of
coherence, probably caused by finite spectral bandwidth. The latter can be improved with
narrower filters but at the expense of lower count rates.

To quantify the distance between the observed and the ideal state, the fidelity is calcu-
lated. In the evaluation enters (similar to the case of the cluster state) only a restricted
set of data, not the complete density matrix. While the state |D(2)

4 〉 is not described by
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local stabilizing operators, there are still only 40 non-zero standard correlations. Even
when the fidelity is calculated from the matrix in figure 7.4 a) only these 40 correlations
enter the evaluation. We find a fidelity of FD

(2)
4 = 84.4 ± 0.8%. Thus, the state |D(2)

4 〉
was prepared with an even higher quality than the cluster state. This can be attributed
to the simplicity of the experimental setup that does not rely on additional interference.
As one of the possible reasons for deviation from the ideal state (mentioned above), we
can calculate the influence of higher order emissions from the SPDC-source. With the
parameters for the source presented in table 4.12 and assuming an otherwise perfect linear
optics setup we find a fidelity of F ≈ 91%. Thus, the higher order emissions are indeed
identified as a signficant source of noise.

The information about the states’ fidelity can be used to gain further insights. The
corresponding result for the generic witness Wg

D
(2)
4

[128] for the state |D(2)
4 〉 is:

Tr(Wg

D
(2)
4

ρD
(2)
4 ) =

2
3
− FD

(2)
4 = −0.177± 0.008. (7.5)

Thus, genuine four-partite entanglement could also be deduced from the fidelity, with
≈ 22σ. Note that 21 measurement settings enter this value. Thus, the measurement time
using this witness was about 7 times higher than for the detection of four-partite entan-
glement with ≈ 18σ using equation 7.4. This shows that the efficiency of the symmetry
based witness in equation 7.4 is (for the state observed here) indeed better than the one
of the generic witness.

Further, conclusions on the geometric measure of entanglement of the observed state
can be drawn. Using equation 2.55 (section 2.3.4, based on [72]) we find:

EG(ρD
(2)
4 ) ≥ 0.235± 0.009, (7.6)

where the ideal state reaches a value of EG(D(2)
4 ) = 0.625. The experimental value does

not indicate a higher geometric measure of entanglement than any of the states presented
in table 3.2.3, thus cannot be used to delimit the observed state from them. It is, however,
potentially useful for comparison with the entanglement observed in future experiments
(independent of the type of state created) where this entanglement measure is analyzed.

Symmetry

By definition, the symmetric Dicke state with two excitations is invariant under all per-
mutations of qubits. This is in contrast to the state |C4 〉 which cannot be transformed
into a completely symmetric state.

For an investigation of this property, we follow the analysis method introduced in sec-
tion 3.3.1 by determining the expectation values of permutation operators. As in the last
chapter, this is done for the generators of the complete permutation group:

〈Sbacd〉 = 0.92± 0.02 (1.0),
〈Sacbd〉 = 0.97± 0.02 (1.0),
〈Sabdc〉 = 0.94± 0.02 (1.0).

2That means we take the efficiency of the photon creation and imperfect coupling and detector efficiencies
into account.
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In other words, the probability to project the corresponding qubit pairs into the symmetric
subspace is (equation 3.29) at least 96± 1%. With the complete set of measurement data
at hand, it is also possible to calculate the expectation values for all other permutations,
resulting in values close to the maximum of 1 between 0.92 - 0.98 and statistical errors of,
at maximum, 0.09. The slight deviations can be interpreted as follows: They can partly be
caused by the mentioned imperfections of the SPDC source. As the photons are, however,
symmetrically distributed, the fact that the values are not equal can only be explained
by minor imperfections in the linear optics setup, e.g. slight polarization dependence of
beam splitters or not totally compensated phases.

As a complete set of correlations is known, we can basically calculate any relevant
value. Still, it is important to emphasize that 21 measurements would have been suffi-
cient to demonstrate the states symmetry under all permutations. As we have discussed
in chapter 6, the analysis of entanglement in subsets of qubits is drastically simplified,
when permutation symmetry of the state is demonstrated. This approach is even more
efficient for states with a higher number of qubits and especially suited for states that are
completely symmetric under permutation of qubits. However, as a complete set of data is
available here, the following investigation includes evaluations on all subsets of photons,
where only few representative examples are depicted.

7.2.2 Connectedness

It was discussed in chapter 3 that symmetric Dicke states show a very different behavior
in comparison with graph states, when qubits are projected. An important insight was
that here the resulting entanglement depends on the measurement result and not only
on the measurement basis. As will be shown, there are also differences between the
states within the family of symmetric Dicke states. In the following, particular properties
of the state |D(2)

4 〉 in this respect will be presented. We experimentally analyze the
corresponding properties thereby distinguishing the observed state from other quantum
states than |D(2)

4 〉.

Three-qubit subsets

Particularly interesting are the states after projection of one photon in horizontal or
vertical direction, or in any equally weighted superposition thereof, e.g. the state |− 〉:

〈V |D(2)
4 〉 =

1√
6
( |HHV 〉+ |HV H 〉+ |V HH 〉)

=
1√
2
|W3 〉, (7.7)

〈−|D(2)
4 〉 =

1√
12

( |HV V 〉+ |V HV 〉+ |V V H 〉 − |HHV 〉 − |HV H 〉 − |V HH 〉)

=
1
2
( |W 3 〉 − |W3 〉) =

1√
2
|G−

3 〉. (7.8)

Indices enumerating the qubits were dropped here, because |D(2)
4 〉 is symmetric under

permutation of qubits and thus results for projections of any qubit are equal. Other projec-
tions in the standard basis lead to similar results (equal up to LU). The first observation
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Figure 7.5: Real parts of density matrices for the W state after projection of photon d
onto |V 〉 (a), G3 state after projection of photon d onto |− 〉 (b), and the residual state
after loss of photon d (c). The imaginary parts consist of noise only, comparable to the
noise in the real part.

is that in both cases genuinely tripartite entangled states are observed (section 3.1.1).
This property is quite special and distinguishes the state |D(2)

4 〉 from the states discussed
before. In addition, and even more important, note that it was shown in section 3.1.1 that
the G3 state belongs to the GHZ3 class, because its tangle is τG3 = 1/3. This means that
we can decide by choice of the measurement basis on a single qubit, whether the state
|D(2)

4 〉 shall be reduced to a GHZ3 class or a W3 state. Neither the GHZ4 and cluster
state, nor the W4 state have this property.

One can draw more conclusions from this concerning the type of entanglement in the
state |D(2)

4 〉. Both, GHZ- and cluster states can be extended to a graph state of a higher
particle number by entangling one qubit of the state with one additional qubit. For
photons this can be realized by the gate presented in chapter 5 or methods presented in
[153, 182]. Also W states can be created from W states of a lower number of qubits by
symmetrizing an additional qubit with a single qubit of the smaller W state (similar to
the scheme in [91]). None of these operations can, however, be used to obtain |D(2)

4 〉
from a W3- or GHZ3 state: If any GHZ3- or W3 state could, by an interaction of one
additional qubit with one qubit of these states, be extended to |D(2)

4 〉, then a local
projective measurement could be used to obtain the respective other kind of state. The
ancillary qubit could be transformed back to its original polarization, which would, all
together, mean a catalytic transformation of one class to the other, which is impossible
as shown in [84]. Therefore, it is also from this point of view very reasonable to consider
the entanglement in |D(2)

4 〉 as a different type of entanglement compared to the GHZ4-,
cluster or W4 state.

These properties will be studied in the following for the experimentally observed states.
Exemplarily, the real parts of the density matrices after projections of the photon in
mode d) are shown in figure 7.5 a) and b), for the W3 and the G3-state, respectively. The
structure of the two states in nicely seen: Three populations for the W3 state with equally
weighted coherences between them. The G3 state’s matrix shows the same terms but also
the corresponding spin flipped ones. The negative off-diagonal terms show the coherence
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7 The symmetric Dicke state with two excitations

Figure 7.6: The outcomes of the entanglement witness measurements for detection of
tripartite entanglement after different operations on each qubit: Projective measurements
in the standard bases or qubit loss. Values over 3.12 indicate the detection of genuine
tripartite entanglement.

between the W3 and W 3 contribution.
The experimental investigation of the discussed properties will be conducted in three

steps: First we demonstrate that the projective measurements indeed result in genuinely
tripartite entangled states. Then, it will be shown that the obtained G3 state indeed
exhibits GHZ3-type entanglement, which requires a more sophisticated application of an
entanglement witness. Finally, we study the W3- and the G3 state in more detail.

In order to demonstrate the tripartite entanglement observed in the state after projec-
tive measurements in the X- and Z-basis, we use again the type of entanglement witness
in equation 3.17, but with the bound for genuine tripartite entanglement:

〈Ws
3〉 = 〈J2

x〉+ 〈J2
y 〉 ≤ 2 +

√
5/2 ≈ 3.12. (7.9)

Note the specific characteristic of this entanglement witness: It can be used with the
same bound for any superposition and mixing of the states |W3 〉 and |W 3 〉. All of these
states give the optimal expectation value of 3.5. This is in contrast to the generic and the
stabilizer witnesses that were used before, which were optimal exclusively for one state. In
figure 7.6 the results are summarized for all standard bases (X, Y , and Z), measurement
results ({H, V }, {+,−}, {R, L}), and modes (a, b, c, d) were the projection is performed.
All resulting states exceed the bound and are thus proved to exhibit genuine tripartite
entanglement. The average overall expectation values is 3.30± 0.03.

While being very practical for the detection of genuine tripartite entanglement in gen-
eral, the witness presented before is not suited to detect GHZ3-type entanglement. Thus,
we rely on the generic witness for GHZ3 states to test whether the projection onto |+ 〉
and |− 〉 indeed results in GHZ-type entanglement. The witness was used before in equa-
tion 3.8 and allows to exclude W3 class states:

WGHZ3 =
3
4

11− |GHZ3 〉〈GHZ3 | . (7.10)

This witness is not suited to detect the entanglement in a G3 state or in the experimentally
observed state directly (the corresponding expectation values are positive). It is, however,
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7.2 Experimental analysis

possible to optimize it for the observed state by application of local filtering operations
(LFO) F̂ = A ⊗ B ⊗ C [21, 183]. The resulting new witness operator is then W ′ =
F̂ †WGHZ3F̂ . Here A,B and C are 2× 2 complex matrices determined through numerical
optimization to find the optimal witness for the detected state [184]. Note, that W ′ still
detects GHZ-type entanglement as F̂ is an SLOCC operation which does not change the
entanglement class. In the measurement, GHZ-type entanglement is indeed detected with
an expectation value of Tr(ρGW ′) = −0.029 ± 0.023 showing that the observed state is
not W3 class3.

It would be desirable to prove that the state after projections in the Z-basis is W3-
type. There is, however, no entanglement witness or other means known to us that
allows to prove this conclusively. We can, however, study the entanglement in the state
obtained after the projective measurement in more detail. Exemplarily, the W3 state
after projection of the photon in mode d onto |V 〉 is analyzed. The density matrix of the
corresponding state is shown in figure 7.5 a). Its fidelity to the state |W3 〉 is 0.882±0.015.
The evaluation of the generic entanglement witness from [89] gives:

Wg
W3

=
2
3

113− |W3 〉〈W3 | . (7.11)

We find Tr(WW3ρW3) = −0.222 ± 0.015 and the corresponding lower bound on the geo-
metric measure of entanglement EG(ρW+

3 ) ≥ 0.283±0.021. This value already shows that
the experimentally observed state is stronger entangled than G3 states are, with respect
to the geometric measure. The fidelity achieved here is slightly above the value (fidelity
0.863 ± 0.018) that can be calculated for the experiment reported in [91, 92], where we
observed the W3 state for the first time. The efficiency of the present setup is, however,
much higher with about 30 counts/min compared to about 2 counts/min. It can, for the
observation of the state |W3 〉 even be improved in efficiency by a different choice of beam
splitters [181].

Two-qubit subsets

Projective measurements of two qubits in the same measurement basis lead probabilisti-
cally to maximal bipartite entanglement between the other two qubits. For the standard
bases this is shown in the following calculation:

〈HV |D(2)
4 〉 = 〈V H |D(2)

4 〉 =

√
1
6
( |HV 〉+ |V H 〉) =

√
1
3
|ψ+ 〉,

〈+−|D(2)
4 〉 = 〈−+ |D(2)

4 〉 =

√
1
12

( |HH 〉 − |V V 〉) =

√
1
6
|φ− 〉,

〈RL |D(2)
4 〉 = 〈LR |D(2)

4 〉 =

√
1
12

( |HH 〉+ |V V 〉) =

√
1
6
|φ+ 〉.

Thus, all symmetric Bell states can be prepared when orthogonal measurement results
are found for XX-, YY- and ZZ-measurements. In the latter case, the probability is 2/3,
for the other two 1/34. Thus, we can choose the Bell state that we want to obtain, but

3For the evaluation of this witness we need the complete set of data of the observed G3 state.
4Because detection of |HV 〉 and |V H 〉 lead to the same results. The same is valid for |+−〉/ |−+ 〉

and |RL 〉/ |LR 〉.

105



7 The symmetric Dicke state with two excitations

Figure 7.7: The density matrices of the state of photons in modes b and c after detection
of orthogonal polarizations in modes a and d. In a), |ψ+ 〉 is observed after projection onto
|HV 〉, in b) |φ− 〉 is observed after projection onto |+−〉, and in c) |φ+ 〉 is observed
after projection onto |RL 〉.

its preparation is probabilistic. Remember the property of the cluster state: There, we
can choose to prepare some Bell state deterministically, but which Bell state exactly is
obtained is probabilistic.

In figure 7.7, the density matrices for the three cases (with projections on photons in
modes a and d) are depicted, illustrating qualitatively the expected behavior. One can
clearly identify the density matrices of states close to |ψ+ 〉 for a projection onto |HV 〉
(a), to |φ− 〉 for a projection onto |+−〉 (b), and to |φ+ 〉 for a projection onto |RL 〉 (c).
In order to quantify these observations, the following table shows the achieved fidelity to
the respectively expected states, their logarithmic negativity, and the concurrence for the
three bases and averaged over all qubit pairs and measurement results:

Fidelity ElN C

HV 0.89± 0.03 0.85± 0.04 0.77± 0.03
+− 0.74± 0.04 0.62± 0.07 0.50± 0.04
RL 0.73± 0.04 0.60± 0.07 0.48± 0.04

The given errors are the averaged values of the single errors, which are approximately equal
for the whole set of data. In addition, figure 7.8 shows a histogram of all achieved values.
We see that there are two groups of data. The entangled state after projections in the
XX- and YY-bases all give approximatively the same value for the observed entanglement.
They exhibit fidelities that allow teleportation fidelities exceeding the classical bound5.
The entanglement is even higher for projections in ZZ-basis. The reason is that the
photons are emitted with the ”right”polarizations in the computational basis, independent
of the coherence between the photons. Thus, the quality of the entangled state after a ZZ-
basis measurement is determined only by the coherence between the residual photon pair.
For measurements that are not in the standard bases, also the entanglement between the
projected and the residual photons influences the quality of the obtained states leading
to a stronger reduction of the quality. Altogether, the presented data shows that the

5The fidelity to a certain Bell state is a lower bound to FMSF , which is the fidelity to the closest Bell
state. The relation between FMSF and the average teleportation fidelity is given in equation 2.38.
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7.2 Experimental analysis

Figure 7.8: The fidelity, logarithmic negativity, and concurrence of the entangled states
after detection of orthogonal polarizations on two qubits are summarized. The highest
entanglement and the best fidelity is observed for the ZZ-measurements (red). Also in the
other standard bases we observe entanglement and a fidelity higher than 0.5, necessary to
reach an average teleportation fidelity beyond the classical limit.

observed Dicke state indeed allows to tailor the entangled states of one photon pair via
projective measurements on the other.

The fact that it is probabilistically possible to make two projective measurements such
that the two residual qubits are maximally entangled can, as mentioned in section 3.3, be
used to establish an open destination protocol (ODT, see figure 3.5 b). Note that here,
in contrast to the ODT-protocols for the cluster and the GHZ4 states section 6.2.3, the
protocol works only probabilistically. With the experimentally prepared state, there are
two reasons to purely rely on projection onto the ZZ-basis: higher probability of success
and a better quality of the resulting state. The corresponding fidelities for an open
destination teleportation from any sender to any receiver are between 0.938 ± .014 and
0.954 ± .014 for a perfect Bell state analysis (calculated with equation 2.38 and starting
from the fidelity to the observed state). Thus, while the protocol is, in contrast to the
cluster state ODT, only probabilistic, the quality that can experimentally be achieved is
higher.
Here, the fact that two parties can probabilistically prepare a particular Bell state for the
other parties is not used for the ODT protocol. It may hold, however, a high potential
for application in multiparty quantum cryptography because the parties sharing the Bell
state can only use it as soon as the other parties broadcast the measurement basis they
used.

7.2.3 Persistency against photon loss

As a symmetric entangled Dicke state, |D(2)
4 〉 exhibits a strong entanglement persistency

against qubit loss. Accordingly, the corresponding experimentally observed residual states
will be studied, leading to interesting possibilities to discriminate the state from GHZ4,
cluster and W4 states.
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7 The symmetric Dicke state with two excitations

Figure 7.9: Real parts of the density matrices after loss of two photons. In a), photons b
and c are lost, in b) photons c and d. In both cases, the same (non-maximally) entangled
state is observed.

Three-qubit subsets

Remarkably, even the loss of a photon leaves the residual state genuinely tripartite entan-
gled:

Trd

[
|D(2)

4 〉〈D(2)
4 |

]
=

1
2
( |W3 〉+ |W 3 〉). (7.12)

This state is an equally weighted mixture between |W3 〉 and |W 3 〉 looking like a three-
qubit entangled state in this particular decomposition. Yet, a separable decomposition
might exist. That it is indeed tripartite entangled can be shown with the same entangle-
ment witness as used for the analysis after projective measurements (equation 7.9). The
ideal state reaches an expectation value of 3.5. In figure 7.6 the values achieved for the en-
tanglement witnesses after tracing out each of the four single photons in the experiment
are summarized together with the corresponding values after projective measurements.
All values clearly exceed the bound of 3.12, showing that the residual three-photon states
are indeed genuinely tripartite entangled. Exemplarily, the corresponding output state
after loss of one qubit is shown in figure 7.5. We observe the contributions of W3 and W 3

without any further coherences, in contrast to the G3 state (figure 7.5 b).
Note that it was discovered only very recently that the state we obtain after tracing

out one qubit from |D(2)
4 〉 (equation 7.12) exhibits a very special type of correlations: It

is multipartite entangled but has no multipartite classical correlations [185].
Tripartite entanglement after qubit loss is a property that neither the GHZ4 nor the

cluster state possess. It was argued in chapter 3 that entangled symmetric Dicke states
exhibit this property: The W3 state also exhibits tripartite entanglement after qubit loss,
even though it is of a different kind. Note, that also the state |Ψ(4) 〉 (section 3.2.3)
still exhibits some tripartite entanglement after qubit loss [83], which can be detected
with the same entanglement witness as used before (Tr

[Ws
3 |Ψ(4) 〉〈Ψ(4) |] = 3.17 > 3.12,

equation 7.9).

Two-qubit subsets

As we have seen in chapter 6, the entanglement in the two graph states is not persistent
against two-qubit loss. Therefore, we focus in the study of bipartite entanglement after
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7.2 Experimental analysis

Figure 7.10: Analysis of the persistency against photon loss using different quantities: For
loss of the six different pairs of photons, the experimentally obtained values for the fidelity,
the concurrence, and the logarithmic negativity are shown. In each figure, the dashed
line indicates the value achieved by an ideal state |W4 〉 and the solid line by the ideal
state |D(2)

4 〉. Note that the persistency of the experimentally observed state is, concerning
the logarithmic negativity and the maximal singlet fraction, higher than the entanglement
persistency of |W4 〉.

tracing out two qubits mainly on a comparison of our Dicke state with |W4 〉. A quan-
titative comparison reveals hereby interesting differences between |D(2)

4 〉 and |W4 〉 that
allow to distinguish between them.

In the state |D(2)
4 〉, the loss of a second qubit also leaves the residual two qubits

entangled:

ρ
D

(2)
4

ij = Trij

[ |D(2)
4 〉〈D(2)

4 | ] =
2
3
|ψ+ 〉〈ψ+ | +1

6
(|HH 〉〈HH | + |V V 〉〈V V |). (7.13)

Due to the permutation symmetry of |D(2)
4 〉, the resulting state is independent of which

qubits i, j have been lost.
The state |W4 〉 has also a high entanglement persistency again the loss of two qubits:

ρW4
ij = Trij

[ |W4 〉〈W4 |
]

=
1
2
(|ψ+ 〉〈ψ+ | + |HH 〉〈HH |). (7.14)

W states are often taken as the example for a state exhibiting high persistency against
photon loss [23, 92, 186]. Indeed, the concurrence of the W4 state (C(ρW4

ij ) = 1/2) is

higher than for the residual state of |D(2)
4 〉 (C(ρD

(2)
4

ij ) = 1/3). In contrast, however,
the maximal singlet fraction FMSF of the residual qubit pairs is higher for the state

|D(2)
4 〉: FMSF (ρW4

ij ) = 1/2 and FMSF (ρD
(2)
4

ij ) = 2/3 [127]. The value 2/3 is actually
the maximally achievable after loss of two qubits from a pure four-photon state when
all qubit pairs are taken into account [143]. Yet, this quantity is not an entanglement
monotone (section 2.3) despite of the fact that it quantifies the teleportation fidelity of
a state. It is interesting to make the comparison also with the logarithmic negativity:

ElN (ρW4
ij ) ≈ 0.272 and ElN (ρD

(2)
4

ij ) ≈ 0.415. Thus, also with respect to the negativity,

the persistency of |D(2)
4 〉 is higher than the persistency of |W4 〉. Therefore, a statement

about the state exhibiting maximal entanglement persistency depends strongly on the
chosen measure of entanglement!
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7 The symmetric Dicke state with two excitations

The residual two-photon state we obtained experimentally in modes a and d after loss
of the other two photons is depicted in figure 7.9 a); correspondingly for modes a and b
in figure 7.9 b). Coherence between the populations with orthogonal photons represents
the |ψ+ 〉-part. The populations with equal polarizations are incoherent. In order to test,
whether the observed state has indeed a higher persistency than the state |W4 〉 concerning
negativity and FMSF , we analyzed the density matrices for all two-qubit subsets. The
results are summarized in figure 7.10 a) and c), where the the fidelity to |ψ+ 〉 (which is
a lower bound on the FMSF , as argued before) and the logarithmic negativity are shown.
The green, dashed line represents the value achieved by the ideal W4 state; the blue,
solid line the value for |D(2)

4 〉. For all cases we clearly exceed the value of the W4 state
and therefore demonstrate that even the experimentally observed state exhibits a higher
persistency against photon loss with respect to these measures. In figure 7.10 b) the
values for the concurrence are depicted in the same way, showing the inverse ordering of
the theoretical values, where the experimentally obtained residual states are, as expected,
below the value for |W4 〉. These results also clearly distinguish the observed state from
|W4 〉.

With the knowledge from section 3.3.2, we can conclude that maximal persistency
of the state |D(2)

4 〉 concerning FMSF indicates that it is optimal for 1 → 3 quantum
telecloning (QTC, see figure 3.5 a). Optimal means that the highest possible fidelity
of 7/9 averaged over all input states is reached [187]. Note that for the state |D(2)

4 〉
the achieved telecloning fidelity is input state dependent. The experimentally achievable
value in the quantum telecloning protocol, assuming perfect Bell state analysis and a
single photon input state is, averaged over all input states, found to be Ftel = 74.9±0.4%,
exceeding the classically achievable value of Fclass = 2/3.

Note further the flexibility of the state |D(2)
4 〉 as quantum resource for the two quantum

communication protocols: The photons are distributed to four parties. Only then, it is
decided who should act as the sender, when he performes the Bell state measurement with
the input qubit. Then, they decide whether each party wants to use its clone (which is
then QTC) or whether they collaborate to transfer the initial qubit probabilistically to
one receiving party (ODT).

7.3 Summary

In conclusion, a setup for the experimental observation of a four-photon Dicke state was
presented, followed by a detailed analysis of the obtained quantum state. To this end we
performed a complete tomographic set of measurements on the state, reconstructed the
density matrix and applied several non-tomographic tools for the analysis of particular
properties. It was shown that the state exhibits qualitatively the properties of an ideal
symmetric Dicke state with two excitations, delimiting the observed state from the other
Dicke state of four qubits, i.e. |W4 〉, from the GHZ4 state and the state analyzed in
chapter 6, i.e. the cluster state |C4 〉.

The observed state was found to exhibit a fidelity of 84.4± 0.8% to |D(2)
4 〉. The close

relation to the SLOCC-family Gabcd was demonstrated by the confirmation of very high
local von Neumann entropies of the single qubits and the detection of genuine four-partite
entanglement in the state. The latter was conducted with an entanglement witness that
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7.3 Summary

exploits the high permutation symmetry of |D(2)
4 〉. The observed state’s symmetry could

also be shown directly.
We further found an unusual property exhibited by the state |D(2)

4 〉 under the pro-
jective measurement of a single qubit: Tripartite entanglement is obtained, independent
of the measurement basis; the entanglement class, however, is selected by the choice of
measurement basis. Density matrices of the remaining states showed the experimental
observation of the states |W3 〉 and |G3 〉, respectively. Genuine tripartite entanglement,
as well as the GHZ3-type entanglement in the observed G3 state were proven with entan-
glement witnesses. Thus, we could indeed demonstrate this extraordinary property also
for the observed state.
The connectedness of the state concerning two projective measurements was successfully
demonstrated by showing the high entanglement in the residual photon pairs. Hereby, the
specific symmetric Bell state, which is obtained probabilistically, depends on the chosen
measurement basis, i.e. can be selected at will.

As an entangled symmetric Dicke state, |D(2)
4 〉 is highly persistent against photon

loss. Detection of non-biseparability in any two- and tripartite subsets of photons in the
observed quantum state confirms this property in the experiment. In particular the quan-
titative evaluation of the persistency against loss of two photons reveals an interesting
insight: A comparison between the states |W4 〉 and |D(2)

4 〉 shows that the notion of
maximal persistency (which is usually attributed to W states) depends strongly on the
chosen entanglement measure: The state |W4 〉 exhibits the highest entanglement per-
sistency concerning the concurrence. The state |D(2)

4 〉, however, is more persistent with
respect to the logarithmic negativity. In addition to this statement about maximal per-
sistency, we gain from these considerations also a method to discriminate the two states.
Experimentally we find that the entanglement persistency of the observed quantum state
with respect to negativity is indeed much higher than the persistency of |W4 〉.

Both, two-qubit connectedness and persistency are conditions for applicability of a
state for quantum telecloning and open destination teleportation. By a calculation of
lower bounds on the fidelities that are expected to be achieved for these protocols, we
showed that, under the condition of a perfect Bell state analysis and input state, both
protocols can be implemented with the experimentally observed state with far more than
classical fidelities.
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8 Conclusions and Outlook

In conclusion, we have experimentally implemented and analyzed two highly four-photon
polarization entangled states: the cluster state |C4 〉 and the symmetric Dicke state with
two excitations |D(2)

4 〉. The observation of the desired entanglement was verified by
showing that the experimentally observed states reproduce characteristic properties of
the ideal states with a high quality. The set of analyzed properties could be evaluated
based on efficient non-tomographic methods. Besides known characteristics of the states
we found several new insights on their entanglement structure and their applicability in
quantum communication.

To experimentally observe the entangled states we relied on spontaneous parametric
down conversion (SPDC), linear optics and conditional detection. We achieved long-term
stability of the setups on the order of a few days for the observation of both states:
The setup for the Dicke state is based on a non-interferometric solution which ensures
its stability. At the core of the cluster state setup is a new tool, which we designed for
linear optics quantum processing: A controlled phase gate, where the non-linear phase
shift is implemented via a HOM-type interference at an asymmetric beam splitter. We
demonstrated that this technique requires an easily achievable stability on the order of
the coherence length of the input photons, i.e. greater than 100µm. With this, the gate
is stable over several days and allowed the first application of a universal entangling
gate in a multiphoton experiment. The characterization of the gate via quantum process
tomography yielded a process fidelity of 81.6%. In addition we showed that separable
states can be entangled such that they have a fidelity to a Bell state of ≥ 80.4%. The
latter is basically only limited by a residual distinguishability of the input photons and
not by the gate parameters, as a detailed analysis of the gate showed.

Based on efficient non-tomographic tools, different aspects of the states were analyzed
systematically: Firstly, a global analysis, focusing on properties that apply to the complete
state. Secondly, an analysis of the entanglement that can be achieved via projective
measurements performed on the state. Thirdly, the states’ persistency of entanglement
under loss of photons.

The states |C4 〉 and |D(2)
4 〉 both belong to the same family of SLOCC classes Gabcd

(equation 3.10, [24]). Characteristic for states of this SLOCC-family are four-partite
entanglement and maximal local entropy. Efficient entanglement witnesses that were
tailored to the states’ properties allowed to prove genuine four-partite entanglement in
both cases. Further, a high local von Neumann entropy was found for the single qubit
density matrices of the two states. Permutation symmetry was argued to be useful for
the non-tomographic analysis of quantum states. To exploit the symmetries exhibited by
|C4 〉 and |D(2)

4 〉, it must be verified to be present in the observed states. To this end
we introduced a method to test this permutations symmetry efficiently in the experiment
and confirmed a high degree of the expected symmetry for both observed quantum states.
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8 Conclusions and Outlook

Figure 8.1: Displayed is in a) an overview of the entanglement that can be obtained
probabilistically and/or in the right measurement basis after projective measurements on
one qubit. The only state that connects the two inequivalent classes of tripartite entan-
glement is |D(2)

4 〉. In b) an overview of the residual entanglement after loss of photons is
demonstrated, showing than symmetric Dicke states are more persistent that graph states
and that the GHZ4 state is maximally fragile.

An important property of graph states was demonstrated for the experimentally ob-
served cluster state by showing that it can be deterministically reduced to cluster states of
three and two qubits (i.e. GHZ and Bell states, respectively). As shown in figure 8.1 a), the
GHZ4- and W4 states are also connected to their own entanglement family via projective
measurements. Surprisingly, the state |D(2)

4 〉 connects both inequivalent SLOCC-classes,
i.e. the W3- and the G3 state. An optimized entanglement witness allowed to verify this
experimentally. Note, further, that these results constitute alternative experimental im-
plementations of the two states |GHZ3 〉 and |W3 〉 and further the first observation of
the G3 state. From the connectedness of |C4 〉 and |D(2)

4 〉 we further inferred their appli-
cability as resource for open destination teleportation. In the experiment we could show
that the observed states indeed allow to implement this protocol with a teleportation
fidelity exceeding the classical bound.

Another property that is relevant for quantum communication is a state’s persistency
against photon loss. It differs strongly in its quality between the four-photon graph and
symmetric Dicke states (see figure 8.1 b): The GHZ state is known to be maximally fragile,
loosing all entanglement with the loss of one photon. The cluster state is more persistent
and exhibits bipartite entanglement after loss of one photon. The highest persistency
is observed in the symmetric Dicke states because they cannot be disentangled by loss
of one or two qubits. Experimentally, this was confirmed perfectly for the investigated
states. Further, we showed that the common notion that W states exhibit the highest
entanglement persistency depends on the bipartite entanglement measure chosen for com-
parison: For the logarithmic negativity, the state |D(2)

4 〉 exceeds the value reached by
|W4 〉, which was also confirmed in the experiment. The fact that D

(2)
4 has further the

maximal possible singlet fraction in the photon pairs implies its applicability for optimal
1 → 3 telecloning. It was shown that also the experimentally observed states can be used
as resource for this application achieving fidelities beyond the classical limit.

The applications previously discussed are directly related to our analysis, there are,
however, more: On the one hand the cluster state can be used for proof-of-principle exper-
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iments on measurement based quantum computation. On the other hand, the controlled
phase gate is a powerful tool with several applications, e.g. teleportation and entangle-
ment swapping. Experiments in both directions will be presented in the PhD thesis of
Christian Schmid [172].

The presented analysis of quantum states is more than just an approach to position
them inside the space of mixed four-photon entangled states. By the choice of meaningful
properties it was possible to gain a deeper understanding for the type of entanglement that
is exhibited by the states. A natural question is now, whether there are other properties
that are worth studying. Particularly interesting are further criteria that allow, similar
to the arguments based on the maximal singlet fraction that were used here, to judge
the applicability of a state for other tasks, e.g. quantum secret sharing. In reverse, such
criteria should allow to identify further relevant quantum states.

It is common practice to invent for each quantum state that is identified as relevant a
corresponding linear optics setup. Another possibility in the development of new linear
optics solutions is to design more flexible setups, where different types of entanglement
can be obtained by a simple variation of an experimental parameter. This would allow, for
example, to observe the transition between different types of entanglement. One possible
approach to this task is the implementation of a quantum state of a high photon number
that can be used to obtain the desired states via adequate projective measurements. That
this is possible was shown in our experiment where reducing the state |D(2)

4 〉 allowed to
obtain a GHZ3 class and a W3 state. Another approach is the design of the linear optics
such that local manipulations at an early stage of the setup lead to non-local effects in its
output. At the moment one can only speculate that these new types of sources hold a high
potential for applications in quantum communication and new types of communication
protocols that rely on switching between different types of quantum states.

Concerning the further development towards the entanglement of more photons, it is
worth noting that the presented schemes are generic for the observation of similar types
of entanglement in states with a higher photon number: Symmetric Dicke states of the
form |D(N/2)

N 〉 can be observed by symmetric distribution of higher order emissions of a
collinear SPDC source. Graph states can be obtained by using the controlled phase gate
to enlarge the graph states with additional photon pairs successively. However, despite
of the observation of up to six photon graph states in some experiments [20], the further
development of states of higher photon numbers with SPDC, linear optics and conditional
detection faces several challenges: On the one hand, the probabilistic character of linear
optics schemes cause the experimental setups to grow inefficient, on the other hand the
necessity to increase the photon creation probability increases at the same time the noise
observed due to higher order emissions. Thus, it is for the moment preferable to achieve
a higher efficiency of coincidence detection either by further engineering of the photon
source, or by improving the single photon detectors. In the long run, however, other
techniques are required to get rid of higher order emissions, e.g. the use of nonlinear
elements, photon number resolving detectors or the combination of SPDC and single
photon sources.

The long-term goal of understanding and experimentally controlling multipartite entan-
glement is the application in quantum computation and quantum communication. It is
still an open question, which physical implementation will be best suited for these tasks.
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8 Conclusions and Outlook

Photonic quantum systems like the presented ones seem to be particularly interesting for
applications in quantum communication as fast carriers of information with a low inter-
action with the environment. Yet, also universal, deterministic linear optics quantum
computation was theoretically shown to be possible [151] and with the development of
new measurement based schemes, several new ideas for photonic quantum computation
have been invented [33, 34, 153, 188, 189]. Based on these ideas, experimental proof
of principle demonstrations of quantum algorithms have very recently been successfully
demonstrated with photons [35–38, 172] and there is certainly much more to come...
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A Geometric measures of entanglement

This part of the appendix documents the sources for the values of the geometric measure
of entanglement given in table 3.2.3. Most of this is based on the publication by Wei et
al.[75], where a generalization of the geometric measure of entanglement [74] for mixed
states is presented. There, the geometric measure of entanglement for several quantum
states is given and the connection to entanglement witnesses explained. For several states
of interest here, the geometric measure of entanglement can be directly taken from [75]:

EG(GHZn) = 1/2 = 0.5, (A.1)

EG(D(2)
4 ) = 5/8 = 0.625, (A.2)

EG(W3) = 5/9 ≈ 0.556, (A.3)

where the state |D(2)
4 〉 corresponds to |Ψ 〉 in the notation of [75]. Using equation (15)1

it is also easy to derive:
EG(W4) = 37/64 ≈ 0.578, (A.4)

which exceeds the value for the W3 state only slightly. Furthermore, the G3 state is part
of the family of states in equation (20)1 with its geometric measure of entanglement given
by:

EG(G3) = 1/4 = 0.25. (A.5)

This value is not only achieved for the superposition, but also for the equally weighted
mixture of the states W3 and W 3; a state we also observe in the experiment (see equa-
tion 7.12).

The geometric measure of entanglement for a variety of Graph states has been derived
by Markham et al. [190]. For the four-qubit cluster state the value is:

EG(C4) = 3/4 = 0.75. (A.6)

Finally, the geometric measure of the state |Ψ(4) 〉 has, together with a whole group of
similar quantum states, numerically been calculated by Eisert et al. [191]:

EG(Ψ(4)) = 2/3 ≈ 0.667. (A.7)

1Refers to equation number in [75]
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B Relation between different states

B.1 Local transformations between G3 and GHZ3

In section 3.1.1, the fact that G3 (equation 3.7) belongs to the GHZ3 class was inferred
from its non-vanishing tangle. Here, this observation will be supplemented by giving the
direct SLOCC transformation between the states |G3 〉 and |GHZ3 〉 (equation 3.1).

The relation is best seen, when both states are first transformed by a H gate on each
qubit:

(H⊗H⊗H) |GHZ3 〉 =
1
2
( |HHH 〉+ |HV V 〉+ |V HV 〉+ |V V H 〉), (B.1)

(H⊗H⊗H) |G3 〉 =
1
2
(
√

3 |HHH 〉 − 1√
3
|HV V 〉 − 1√

3
|V HV 〉 − 1√

3
|V V H 〉). (B.2)

The amplitudes can be accordingly manipulated with the following non-unitary transfor-
mations acting on each qubit:

T =

(
1√
3

0
0 i

)
; T =

(
1 0
0 − i√

3

)
. (B.3)

Altogether we find:

(H⊗H⊗H)(T ⊗ T ⊗ T )(H⊗H⊗H) |G3 〉 =
1
3
|GHZ3 〉, (B.4)

(H⊗H⊗H)(T ⊗ T ⊗ T )(H⊗H⊗H) |GHZ3 〉 =
1√
3
|G3 〉. (B.5)

This provides an additional proof for the SLOCC equivalence of the two states. Fur-
thermore, these stochastic local operations (no classical communication necessary) can
straightforwardly be implemented via wave plates and the type of polarization dependent
beam splitter (section 4.2) that was also used in the controlled phase gate experiment (see
chapter 5). The conversion happens with a probability of 1/9.

B.2 Direct proof of state classification

Here, it will be shown explicitly how the states presented in section 3.2 fit in the classifi-
cation presented in [24]. Most states belong to the family of SLOCC classes parametrized
as presented in equation 3.10:

Gabcd =
a + d

2
( |HHHH 〉+ |V V V V 〉) +

a− d

2
( |HHV V 〉+ |V V HH 〉)

+
b + c

2
( |HV HV 〉+ |V HV H 〉) +

b− c

2
( |HV V H 〉+ |V HHV 〉), (B.6)

where a, b, c, and d are complex parameters with positive real part.
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B.2 Direct proof of state classification

� The GHZ4 state is:

|GHZ4 〉 =
1√
2
( |HHHH 〉+ |V V V V 〉).

Thus, the coefficients are a = d =
√

1
2 , b = c = 0. As we have seen that the state

is locally equivalent to the G4 state (equation 3.20). Thus, the latter naturally also
belongs to this SLOCC-family.

� The state |C4 〉 is under LU ( 4
√

σ̂z on every qubit) equivalent to a state that follows
the above parametrization:

( 4
√

σ̂z)⊗4 |C4 〉
= ( 4

√
σ̂z)⊗4

[
1
2
( |HHHH 〉+ |HHV V 〉+ |V V HH 〉 − |V V V V 〉)

]

=
1
2
( |HHHH 〉+ i |HHV V 〉+ i |V V HH 〉+ |V V V V 〉)

The coefficients for this state are a = (1 + i)/2, d = (1− i)/2, b = c = 0.

� The state D
(2)
4 equation 3.23 needs to be transformed with spin-flips on the last two

qubits:

(11⊗ 11⊗ σ̂x ⊗ σ̂x) |D(2)
4 〉 =

√
1
6

(
|HHHH 〉+ |HV HV 〉+ |HV V H 〉

+ |V HHV 〉+ |V HV H 〉+ |V V V V 〉
)

.(B.7)

It can thus be directly identified with the parametrization of Gabcd for a = d =
1√
6
, b = 2√

6
, c = 0.

� The state |Ψ(4) 〉 after the same transformation gives:

(11⊗ 11⊗ σ̂x ⊗ σ̂x)Ψ(4) =
1√
3

( |HHHH 〉+ |V V V V 〉) (B.8)

− 1√
12

( |HV HV 〉+ |HV V H 〉 + |V HHV 〉+ |V HV H 〉).

Thus, the coefficients in Gabcd are a = b = d = 1√
3
, c = 0.
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B Relation between different states

� For completeness, the relation of W4 to its SLOCC-family (see equation 3.11) is
given:

Lab3 = a( |HHHH 〉 (B.9)

+
a− b

2
( |HV V H 〉+ |V HHV 〉) +

a + b

2
( |HV HV 〉+ |V HV H 〉)

+ |V V V V 〉) +
i√
2
( |HHHV 〉+ |HHV H 〉+ |HV V V 〉+ |V HV V 〉)

Up to normalization and an irrelevant global phase, we obtain this state with a =
b = 0. In this case, only the last term is not vanishing, which can be obtained via a
spin-flip on the third and fourth qubit:

(11⊗ 11⊗ σ̂x ⊗ σ̂x) |W4 〉
= (11⊗ 11⊗ σ̂x ⊗ σ̂x)

[
1
2
( |HHHV 〉+ |HHV H 〉+ |HV HH 〉+ |V HHH 〉)

]

=
1
2
( |HHV H 〉+ |HHHV 〉+ |HV V V 〉+ |V HV V 〉)
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C Linear multiqubit tomography

We conduct the calculation for a linear N -qubit tomography along the lines presented in
section 4.3.2 for two qubits resulting in equation 4.23. The calculation is started from the
decomposition of the density matrix of N qubits(equation 4.18):

ρ =
1

2N

3∑

{bj}=0

K{bj}
N∏

j=1

σ̂bj , (C.1)

where {bj} = {b1, b2..., bN}, i.e. the summation is taken over all N indices bj with j ∈
{0, 1, ..., N}. We split this sum in N + 1 sums that are taken over correlations with an
equal number of indices 0. In other words, each term has only tensor products of Pauli
matrices that contain the same number of σ̂0 = 11, in decreasing order:

ρ =
1

2N


K0...011⊗N +

N∑

µ=1

3∑

bµ=1

K...0,bµ,0...11⊗µ−1 ⊗ σ̂iµ ⊗ 11⊗N−µ + ... +
3∑

{bj}=1

K{ij}
∏

j

σ̂bj


 .

(C.2)
For the N -party case the correlations can, as in equation 4.20, be expressed in terms of
count rates. Exemplarily, this is shown here for an arbitrary correlation:

K0...0,bµ,0,...,0,bν ,0,... =
1

3(N−2)

∑

{bl}∈Γ

∑

{sl}∈Ξ

sµsνc
{sj}
{bj}, (C.3)

where Γ are all N-tuples of the form {{1, 1, ..., 1}, {1, 1, ..., 2}, ..., {3, 3, ..., 3}} and Ξ are all
N-tuples of the form {{−1,−1, ...,−1}, {−1,−1, ..., 1}, ..., {1, 1, ..., 1}}. Then {sj} denote
the eigenvalues for all operators {σ̂bj}; further, {bl} = {b1...bµ−1bµ+1...bν−1bν+1...bN},
i.e. is the list of operator indices where the µ-th and ν-th element are missing. The factor

1
3(N−2) appears when the σ̂0 matrices are expressed in terms of an average of relative
frequencies cs

b for all bases, i.e. for all b ∈ {1, 2, 3}.
By substituting all correlations derived this way in equation C.2, the summations are

again taken over all N operators. Note that for only one correlation (as in equation C.3)
the summation was taken over a smaller set of operators. Thus, the sums over the bases
and the signs {sj} can be taken out:

ρ =
3∑

{bj}=1

∑

{sj}=±1

c
{sj}
{bj}

(
1

3N
11⊗N +

N∑

j=1

1
3N−1

11⊗j−1 ⊗ σ̂bj ⊗ 11⊗N−j + ... +
∏

j

σ̂bj

)
(C.4)

It is easily seen that the operator for the different count rates can be written as a product:

ρ =
3∑

{bj}=1

+1∑

{sj}=−1

c
{sj}
{bj}

∏

j

(
1
3

11 + sj σ̂bj

)
. (C.5)

With this, the result used in equation 4.23) is derived.
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G. Tóth, O. Gühne, R. Ursin and H. Weinfurter.
Experimental Analysis of a Four-Qubit Photon Cluster State,
Phys. Rev. Lett. 95, 210502 (2005).

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer and H. Weinfurter.
Experimental Realization of a Three-Qubit Entangled W State,
Phys. Rev. Lett. 92, 077901 (2004).

122



N. Kiesel, M. Bourennane, C. Kurtsiefer, H. Weinfurter,
D. Kaszlikowski, W. Laskowski and M. Żukowski.
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[12] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W.K. Wootters.
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-
Rosen channels, Phys. Rev. Lett. 70, 1895 (1993).

[13] R. Feynman. Simulating Physics with Computers, Int. J. Theor. Phys. 21, 467
(1982).

[14] D. Deutsch. Quantum theory, the church-turing principle and the universal quantum
computer, Proceedings of the Royal Society of London A 400, 97 (1985).

I



Bibliography

[15] P.W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer, SIAM J.Sci.Statist.Comput., arXiv:quant-
ph/9508027v2 26, 1484 (1997).

[16] L.K. Grover. Quantum Mechanics Helps in Searching for a Needle in a Haystack,
Phys. Rev. Lett. 79, 325 (1997).

[17] D. Bouwmeester, J.W. Pan, M. Daniell, H. Weinfurter and A. Zeilinger. Observation
of Three-Photon Greenberger-Horne-Zeilinger Entanglement, Phys. Rev. Lett. 82,
1345 (1999).

[18] J.W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter and A. Zeilinger. Exper-
imental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger
entanglement, Nature 403, 515 (2000).

[19] D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter and A. Zeilinger.
Experimental Quantum Teleportation, Nature 390, 575 (1997).

[20] C.Y. Lu, X.Q. Zhou, O. Gühne, W.B. Gao, J. Zhang, Z.S. Yuan, A. Goebel, T. Yang
and J.W. Pan. Experimental entanglement of six photons in graph states, Nat. Phys.
3, 91 (2007).

[21] H. Haffner, W. Hansel, C.F. Roos, J. Benhelm, D. Chek-al kar, M. Chwalla, T. Ko-
rber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dur and
R. Blatt. Scalable multiparticle entanglement of trapped ions, Nature 438, 643
(2005).

[22] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R.B. Blakestad, J. Chiaverini,
D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, R. Reichle and
D.J. Wineland. Creation of a six-atom ”Schrodinger cat” state, Nature 438, 639
(2005).

[23] W. Dür, G. Vidal and J.I. Cirac. Three qubits can be entangled in two inequivalent
ways, Phys. Rev. A 62, 062314 (2000).

[24] F. Verstraete, J. Dehaene, B.D. Moor and H. Verschelde. Four qubits can be entan-
gled in nine different ways, Phys. Rev. A 65, 052112 (2002).

[25] L. Lamata, J. Leon, D. Salgado and E. Solano. Inductive classification of multipartite
entanglement under SLOCC, quant-ph/0603243 (2006).

[26] L. Lamata, J. Leon, D. Salgado and E. Solano. Inductive Entanglement Classifica-
tion of Four Qubits under SLOCC, quant-ph/0610233 (2006).

[27] O. Mandel, M. Greiner, A. Widera, T. Rom, T.W. Hänsch and I. Bloch. Controlled
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[128] G. Tóth. Detection of multipartite entanglement in the vicinity of Dicke states with
many excitations, quant-ph/0511237v1 page 6 (2005).

[129] A. Sorensen, L.M. Duan, J.I. Cirac and P. Zoller. Many-particle entanglement with
Bose-Einstein condensates, Nature 409, 63 (2001).
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