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States with genuine entanglement are not necessarily exhibiting correlations between the

measurement outcomes of all involved parties what might seem paradox at first. This

thesis studies an exemplary three qubit state with these properties - being genuinely

tripartite entangled and showing no correlations between the outcomes of all parties

(vanishing full correlations). This property is not restricted to the one considered state,

but will be generalised to a class of states. Furthermore, this thesis considers different

quantum state reconstruction methods. Comparing the quality of those estimators,

the usually employed methods are shown to be biased, i.e. showing a systematical

deviation between the theoretical prediction and the estimated value. A procedure will

be introduced how non-linear, but convex or concave functions can be bounded by a

linear approximation. Finally, another quantum state estimator based on modifying the

eigenvalues of a matrix will be introduced.
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Chapter 1

Introduction

Quantum entanglement [1, 2] as a fundamental concept of quantum information pro-
cessing establishes a widespread field of research. The counter-intuitive behaviour of
entangled states, with classical thinking not comprehensible, empoweres ways for im-
proved metrology [3, 4], computation [5–7] and communication and cryptography [8, 9].

The main topics of this thesis will be discussed after a short introduction of some fun-
damental concepts. In the next chapter, chapter 2 - “Fundamentals”, an overview of
the used notation and the concepts of entanglement will be given. Furthermore, impor-
tant quantities will be discussed that are used to estimate for example the quality of a
prepared quantum state with respect to its theoretical state. Moreover, a short survey
of different methods to detect entanglement will be made [10]. After summing up some
quantum states of relevance for this thesis, experimental requirements will be treated
such as the creation of entangled photon pairs.

Intuitively, one would assume that an entangled state exhibits correlations between its
measurement outcomes. Chapter 3 - “No Correlations” - will treat the question if it is
possible to find a genuinely tripartite entangled state where no full correlations between
the measurement outcomes of all parties are present. Consider a state with three qubits
and the respective measuring parties denoted by Alice, Bob and Charlie. If Alice and Bob
perform measurements onto their respective qubits, can Charlie infer his measurement
outcome by the knowledge of the others’ outcomes? As will be further illustrated in
that chapter, Charlie is able to infer his measurement result if both, Alice and Bob,
tell him their concrete outcomes. Instead, if Alice and Bob talk to each other about
their results and tell Charlie only if they obtained the same or opposite results, Charlie
cannot necessarily infer anything about his respective outcome. The discrimination
between full knowledge of all other outcomes and knowing only the parity of these
outcomes will be clarified by an exemplary state. While this effect was already purely
theoretically studied [11], this thesis deepens the analysis for an exemplary state. A
more general class of states without any n-partite correlations is discussed in [12]. Here,
the theoretical considerations are generalised to another class of states with genuine
n-partite entanglement, but without any n-partite correlations [13].

Another topic of this thesis is the investigation of quantum state reconstruction meth-
ods [14–20]. All measurements performed in the laboratory come intrinsically only with
finite statistics [20]. Even if the experiment would be operated with perfect devices and
accurate alignments, some of the reconstructed states would not represent a physical

1



Chapter I. Introduction 2

state [15]. Because the eigenvalues of the density matrix of a physical state correspond
to probabilities, these eigenvalues are expected to be bounded between zero and unity.
This interpretation fails for non-physical results. Furthermore, some non-linear func-
tions cannot be evaluated if the physicality constraint is not fulfilled. To be able to
call the obtained result a density matrix and use it for further analysis, one is inter-
ested in finding the physical quantum state that is in best agreement with the measured
data [16]. Chapter 4 - “Bias of Estimators” - discusses different methods [15–18] to find
the (physical) quantum state that, e.g., most likely produced the measured data. It
furthermore inspects the quality of the obtained quantum state. To fulfil this quality
research, one needs a large data set for investigation. For that purpose, this chapter is
based on numerical simulations [21], bringing the advantage that one knows the under-
lying quantum state and allowing to compare the simulated data with the expectation
values. The quality of commonly used quantum state estimators will be studied as
well as the widespread bootstrapping methods [22] to infer statistical information. This
chapter will present a method to evaluate non-linear, but convex or concave functions
without estimating the underlying quantum state [23]. Using a linear approximation
delivers unbiased results. Furthermore, the calculation of confidence regions is based on
the Hoeffding calculus [24] and does not rely on further assumptions. Finally, another
state estimator will be introduced that is able to provide promising results for a subset
of states. This study will show the gain of quality of the state estimation if a priori
knowledge is used.

After a short conclusion of some of the insights of this thesis (chapter 5) calculations
closely related to the topics of the main text, but not absolutely necessary for understand-
ing it, are done in appendix A - “Additional calculations”. More detailed information
concerning the used convex optimisation for quantum state reconstruction is given in
appendix B - “Convex optimisation”. Finally, this thesis concludes with a list of the
used references.



Chapter 2

Fundamentals

2.1 Qubits

While classical computation is based on bits [25] - a short term for binary digit - ,
quantum computation makes use of so called qubits (quantum bits) [26]. A good starting
point for a suited quantum system is to think of two states of a system: a ground state
and an excited state, which will be denoted in Dirac’s Bra-Ket notation [27] as |0〉 and
|1〉, respectively. A classical bit can either be in the ground state or in the excited state
while in contrast the state of the qubit can be any superposition of the states |0〉 and
|1〉:

|ψ〉 = α|0〉+ β|1〉, (2.1)

with α, β ∈ C and 〈ψ|ψ〉 = 1. Since |α|2 + |β|2 = 1 must hold, |ψ〉 can also be written as
|ψ〉 = eiγ

(
cos
(
θ
2

)
|0〉+ sin

(
θ
2

)
eiφ|0〉

)
with γ, θ, φ ∈ R [5]. The global phase eiγ cannot

be observed whereby the state can be expressed with the help of the transformation
|ψ〉 → e−iγ |ψ〉 as [28]

|ψ〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
eiφ|0〉. (2.2)

The parametrisation by means of the angles θ ∈ [0, π] and φ ∈ [0, 2π] enables a spherical
illustration of the state. This geometric representation is called Bloch sphere [29], which
is shown in Fig. 2.1 with an exemplary Bloch vector |ψ〉. The states |0〉 and |1〉 corre-

spond to the poles of the sphere. In contrast, states of the form |0〉+eiφ|1〉√
2

(i.e. θ = π/2)

lie on its equator.
Similar to the basis {|0〉; |1〉} used above, all sets of two orthonormal states can be used
as a basis. The three most important ones are given by the eigenvectors of the frequently
used Pauli matrices which span up the corresponding basis. Throughout this thesis, the
Pauli matrices are defined by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
. (2.3)

It is also useful to define another matrix σ0 which equals the 2× 2-unity matrix:

σ0 = I =

(
1 0
0 1

)
. (2.4)

3
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|H

|V

|P

|M

|L

|R

|ψ

Figure 2.1: The bloch sphere illustrating a one qubit state |ψ〉. Pure states lie on the
sphere’s surface as the shown exemplary state. In general, the radius is a measure for

the purity of the state.

To improve the readability of some expressions, the matrices {σ0, σx, σy, σz} may also
be addressed via a scalar index1 such that σ1 ≡ σx, σ2 ≡ σy, σ3 ≡ σz.
The qubit formalism can be used for instance to describe the polarisation degree of
freedom of photons [30]. In this case, the horizontal polarisation |H〉 can be identified
with the ground state |0〉 while the vertical polarisation |V 〉 corresponds to the excited
state |1〉. |H〉 and |V 〉 are the eigenstates to the Pauli matrix σz:

σz|H〉 =

(
1 0
0 −1

)(
1
0

)
=

(
1
0

)
= +|H〉 (2.5)

σz|V 〉 =

(
1 0
0 −1

)(
0
1

)
= −

(
0
1

)
= −|V 〉. (2.6)

According to Eq. 2.5 and 2.6, the eigenstates of σx and σy can be determined:

σx|P 〉 =

(
0 1
1 0

)
1√
2

(
1
1

)
= 1√

2

(
1
1

)
= +|P 〉 (2.7)

σx|M〉 =

(
0 1
1 0

)
1√
2

(
1
−1

)
= 1√

2

(
−1
1

)
= −|M〉 (2.8)

σy|R〉 =

(
0 −i
i 0

)
1√
2

(
1
i

)
= 1√

2

(
1
i

)
= |R〉 (2.9)

σy|L〉 =

(
0 −i
i 0

)
1√
2

(
1
−i

)
= 1√

2

(
−1
i

)
= −|L〉, (2.10)

1Depending on the context, either the numerical (“0”, “1”, “2”, “3”) or the alphanumerical (“0”,
“x”, “y”, “z”) indexing will be preferred. Both ways are fully equivalent.
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where the plus state |P 〉 and the minus state |M〉 are the eigenstates corresponding to
a linear diagonal polarisation. In contrast, the right state |R〉 and the left state |L〉
are used to describe right and left circular polarisation, respectively. The set of bases
{σx, σy, σz} corresponds to the basis vectors {~ex, ~ey, ~ez} (as for example used by the
illustration of the Bloch sphere) since there is a homomorphism from the special unitary
group SU(2) to the special orthogonal group SO(3) [31].

2.2 Mixed states

Since the previous discussion treated only pure states, a more general approach to de-
scribe states is required. The density operator or density matrix formalism helps to
describe incoherent summations of pure states. If some pure states |ψi〉 are mixed, each
with a corresponding probability pi, the mixed state can be expressed as [5]

ρ =
∑
i

pi|ψi〉〈ψi|, (2.11)

where the probabilities pi ≥ 0 have to sum up to 1. Because of |ψi〉 being normalised
the trace of ρ equals

tr(ρ) = tr

(∑
i

pi|ψi〉〈ψi|

)
=
∑
i

pi tr (|ψi〉〈ψi|) =
∑
i

pi = 1. (2.12)

While pure states ρ = |ψ〉〈ψ| are idempotent, i.e. ρ2 = ρ holds2, in general the condition
tr ρ2 ≤ 1 is fulfilled [28]. Because 〈φi|ρ|φi〉 corresponds to the probability to find ρ in
the state |φi〉, 〈φi|ρ|φi〉 ∈ [0, 1] must hold ∀|φi〉. Therefore, it is obvious that ρ has to
be positive semi-definite, i.e. ρ ≥ 0.

It is also possible to parametrise ρ in terms of a Bloch vector ~r =

xy
z

:

ρ =
I
2

+
1

2
~r~σ =

1

2

(
1 + z x− iy
x+ iy 1− z

)
, where~σ =

σxσy
σz

 (2.13)

is composed by the Pauli matrices. While for pure states ρ = |ψ〉〈ψ| the Bloch vector
is of unit length, mixed states lie on the inside of the Bloch sphere. If instead of the
Bloch vector ~r a first order tensor T̂ is used, where Ti ∈ [−1, 1] with i ∈ {0, 1, 2, 3} and
T0 = 1, Eq. 2.13 becomes

ρ =
1

2

3∑
i=0

Tiσi. (2.14)

Since tr ρ2 ≤ 1 must hold for valid density operators, there are also constraints to the
elements of the tensor T̂ such that Eq. 2.14 still describes a physical state. Since T0 = 1
holds, it can directly deduced that

∑3
i=0 T

2
i ≤ 2 must be valid for all single qubit density

matrices. The derivation for this constraint will follow for the general multiqubit case
in Eq. 2.20.

2since ρ2 = |ψ〉〈ψ||ψ〉〈ψ| = |ψ〉〈ψ|
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2.3 Multiqubits and Entanglement

States that are composed by more than one qubit are called multiqubit states. In
contrast to the basis of a pure single qubit state, that is according to Eq. 2.1 spanned
by only two orthonormal states, the basis of states with n qubits is now composed of
2n orthonormal elements. If this composite quantum system only consists of n distinct
physical systems Si, its state can be written as [5]

|ψ〉 =

n⊗
i=1

|φi〉 (2.15)

with |φi〉 ∈ HSi , where HSi denotes the Hilbert space of the system Si. States that can
be decomposed into all subsystems according to Eq. 2.15 are called fully separable or
product states [28, 32]. If the given pure state is not of the form of Eq. 2.15, but instead
of the more general form and composed of at least two terms

|ψ〉 =
∑
i1,...,in

αi1,...,in

n⊗
j=1

|φij 〉, (2.16)

this state is entangled [33]. If it is possible to find a basis such that all but one coefficients
αi1,...,in vanish, the left over coefficient is normalised to 1, Eq. 2.16 simplifies to Eq. 2.15
and the state is fully separable. To illustrate this non-separability of entangled states,
it is useful to look at an exemplary state like the |φ+〉 (Bell state or EPR pair) state [5]
(Sec. 2.5.1):

|φ+〉 =
|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B√

2
, (2.17)

where the indices A and B denote the first and the second qubit, which shall be given
to the parties called Alice and Bob. Assuming Alice wants to measure the state of her
qubit, she projects it onto the possible local results and obtains that her qubit is with
the same probability of 1

2 in each state |0〉A, |1〉A. If for example she measured her qubit
being in state |0〉A, she directly knows the state of Bob’s qubit to be |0〉B. Therefore, it
is manifest to call the measurement outcomes of Alice and Bob correlated [5].

Entanglement (“Verschränkung” [34]) is the canonical element to observe such correla-
tions. It is also the main resource of quantum information processing [2, 5]. Knowing
the measurement outcome of remote qubits - presumably instantaneously, but at least
orders of magnitude faster than the speed of light [35] - just by measuring on another
qubit, gives rise to fundamental questions. Is the correlation, that can occur in quantum
systems, in any mean different from classical correlations [36]? Can the correlation of
the measurement outcomes of a quantum state be explained by classical models, i.e.
does the experimentalist only investigate inherent attributes of the particles, that ex-
ist independently of the measurement process [37]? Since it is possible to determine a
bound that is fulfilled by local-realistic theories, but beaten by theories that are not both
local and realistic [38], Einstein’s explanation of local hidden variables can be falsified.
These inequalities are called Bell inequalities [39]. The correlation of Alice’s and Bob’s
measurement outcomes cannot be explained classically, i.e. with local-realistic theories.
Finding vivid descriptions for entanglement is intrinsically difficult due to its non-
classicality. Enlightening publications concerning this topic are for example [40–42].
The at first glance paradox situation of the “quantum kitchen” [42] will be briefly reca-
pitulated here. Consider two ovens producing each one soufflé. The only possibility to
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inspect the cake is by opening the oven making further baking impossible. Assume that
the following statements hold: if both bakers, A and B, open their ovens midway, their
soufflés already rose in 9% of the cases. Furthermore, assume that if one cook opens his
oven during baking and sees his cake to be risen early, the other one’s cake is delicious
after baking. Classically, one would infer that in at least 9% of the cases both soufflés
succeed and taste good. Instead, this lower bound can be beaten by an appropriately
constructed quantum state up to the case that both cakes never taste good [42].

Up to now, with Eq. 2.16 only pure multiqubit states could be described. Instead, a
multiqubit expression for the density operator formalism is needed, that can describe
multiqubit mixed states. The usage of Pauli matrices as a basis for density operators as
given in Eq. 2.14 leads directly to a general expression for n qubit density operators [43]:

ρ =
1

2n

3∑
µ1,...,µn=0

Tµ1...µn

n⊗
i=1

σµi . (2.18)

The tensor T̂ before of first order, is now of order n with real entries Tµ1...µn ∈ [−1, 1]
with indices µi ∈ {0, 1, 2, 3} for i = 1, . . . , n. Because of the properties of Pauli matrices3

the entries of the tensor T̂ can be obtained easily from Eq. 2.18 by calculating

Tµ1...µn = tr

[
ρ

(
n⊗
i=1

σµi

)]
. (2.19)

Since Tµ1...µn represents the correlation of the measurement outcomes in the particular
basis

⊗n
i=1 σµi , the tensor T̂ is called correlation tensor [44].

According to the constraint of
∑3

i=0 T
2
i ≤ 2 for the n = 1 qubit case, which was already

mentioned earlier, this bound for the correlation tensor elements can be calculated for
arbitrary number of qubits. The sum of squared correlation tensor elements must fulfil

3∑
µ1,...,µn=0

T 2
µ1...µn ≤ 2n, (2.20)

which will be derived in A.1. This bound is saturated for instance by the already men-
tioned Bell state |φ+〉 since in this case T00 = 1, TXX = 1, TY Y = −1, TZZ = 1 and
Tij = 0 for all other cases.
Note that - exactly as the Pauli matrices - the correlation tensor elements will be ad-
dressed by numerical as well as by alphanumerical indexing, for instance T11 ≡ TXX .

2.3.1 Types of entanglement

Previously, states were described to be either entangled or separable. While two qubit
states can only be on one hand entangled or on the other hand separable, for states with
higher numbers of qubits a more diverse classification of entanglement is possible. Here,
this will be exemplary discussed for the case of states with three qubits, where the qubits
will be denoted by “A”, “B” and “C”. The state is a fully-separable product state if the
state is composed of a tensorial product of A ⊗ B ⊗ C=̂A|B|C according to Eq. 2.15.
Furthermore, the state is bi-separable if it is of the form A|BC (or B|AC or C|AB) [28].
While these bi-product states are already entangled, finally, another class of states exist.

3The properties tr(σx) = tr(σy) = tr(σz) = 0, tr(σ0) = 2 and σiσj = δijσ0 + iεijkσk are needed here.
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GHZ W

genuine

entangled

biseparable

fully 

separable

Figure 2.2: Different classes of entanglement for three qubit states. States can be
either fully separable, bi-separable or genuinely tripartite entangled. The entanglement
of the qubits, which are symbolised by the red circles, is depicted by the orange group-
ings. Note that genuinely tripartite entangled states can also be split into two different

classes of states [45].

The state may also be of the form ABC, where the state cannot be decomposed into
two or more states at all. Thus, these states are genuinely tripartite entangled [28].
Please note that there are also different classes of genuine tripartite entangled states, as
one can still distinguish between the entanglement of the class of |GHZ〉 states (see Sec.
2.5.2) and of the |W〉 states (see Sec. 2.5.4) [45, 46]. This classification is sketched in
Fig. 2.2.

2.4 Quantities of interest

After preparing and measuring a quantum state, it is often desired to study the state
with regard to certain measures. In the following an overview of important functions
to be evaluated on quantum states will be presented. This section starts with different
ways how to detect entanglement of quantum states.

2.4.1 Detecting entanglement

Although discriminating entangled and separable states may seem to be a simple task for
a low number of qubits and ideal systems like the Bell state in Eq. 2.17, entanglement
detection and quantification can indeed be rather challenging. Since there is a multitude
of detection schemes, only a short excerpt over some methods will be given. First, a
list of qualitative detection methods will be presented while later on also quantitative
measures will be introduced when discussing interesting functions of quantum states.
For a more detailed overview, please see [1, 10, 47].
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Scalar product on correlation tensor

Analogously to Eq. 2.15, separable mixed states can be decomposed into their separate
density matrices

ρ =
∑
i

pi

n⊗
j=1

ρ
(j)
i , (2.21)

with probabilities pi ≥ 0 and
∑

i pi = 1 [44]. For these product states the correlation

tensor T̂ factorises:
T̂ sep =

∑
i

piT̂
prod
i (2.22)

with T̂ prod
i =

⊗n
j=1 T̂

(j)
i . Additionally, this factorisation of product states can be used

to detect entanglement. For that purpose, an inner product (scalar product) is defined
as (

X̂, Ŷ
)
G

=
3∑

µ1,...,µn,ν1,...,νn=0

Xµ1,...,µnYν1,...,νnG
µ1,...,µn,ν1,...,νn (2.23)

with the positive semi-definite metric G [44]. Here, the metric

Gµ1,...,µn,ν1,...,νn = δµ1,ν1 · · · δµn,νn (2.24)

may be used. Consider a state ρ described by a correlation tensor T̂ . If ρ is a product
state, there exists a state ρprod with a correlation tensor T̂ prod such that (T̂, T̂ prod)G =

(T̂, T̂ )G. Thus, if the expression

max
T̂prod

(
T̂, T̂ prod

)
G
<
(
T̂, T̂

)
G

(2.25)

holds, the state ρ with correlation tensor T̂ is not a product state. If instead of ρprod

the state is compared with a bi-separable state ρbi−sep, genuine entanglement can be
detected. Instead of the here used metric G it is already sufficient to find any metric

such that maxT̂prod

(
T̂, T̂ prod

)
G
<
(
T̂, T̂

)
G

holds. For details, please see [44, 48].

Schmidt decomposition

Since pure states |ψ〉 written in the form of Eq. 2.16 are entangled if |ψ〉 is composed
of more than one

⊗n
j=1 |φij 〉 for orthonormal basis states, also the Schmidt decomposi-

tion [32, 49] can be used for detecting entanglement. For two qubits, a pure state may
be decomposed into [50]

|ψS〉 = cos(θ)|a〉 ⊗ |b〉+ sin(θ)|a⊥〉 ⊗ |b⊥〉 (2.26)

with the local bases {|a〉, |a⊥〉} for Alice and {|b〉, |b⊥〉} for Bob with θ ∈ [0, π/4] [50].
As soon as θ > 0, |ψS〉 is entangled.
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Linear Entanglement Witness

A different type of entanglement criterion can be established by entanglement witnesses.
An observable Ŵ is called (entanglement) witness if [10]

• all separable states ρsep give tr(Ŵρsep) > 0 and

• at least one entangled state ρent fulfils tr(Ŵρent) < 0.

sep

entangled

W1

W2

tr( W1)>0

tr( W2)>0
tr( W1)<0

tr( W2)>0

tr( W1)<0

tr( W2)<0

1

2
3

4

|ξ

Figure 2.3: Illustration of an entanglement witness. The space of separable states is
a subspace of the entire state space. Both witnesses W1 and W2 can distinguish some
entangled states from all separable ones. Obviously, also entangled states can deliver
tr(Wρ) ≥ 0 and are consequently not detected to be entangled. Separable states belong
to the space of states denoted with (1). As well as some entangled states (those of group
(2)) the separable states give tr(Wρ) ≥ 0 for both shown witnesses. The states of (3)
are already detected to be entangled by the witness W1, but not by W2. Therefore, W1

is a finer witness. (4) corresponds to the states detected by both, W1 and W2, to be
entangled.

Therefore, tr(Ŵρ) < 0 is a sufficient, but not necessary condition to detect entanglement,
which is apparent from Fig. 2.3. An often used approach to construct a witness Ŵ is
by projecting ρ onto a pure genuine n-partite entangled target state |ξ〉. Then, the
maximal overlap of |ξ〉 with separable states is considered to detect entanglement for
arbitrary states. If the overlap of ρ with |ξ〉 is larger than |ξ〉 with all separable states,
ρ is entangled. Therefore, Ŵ is constructed according to [51] such that

Ŵ|ξ〉 = αI− |ξ〉〈ξ| (2.27)

with α = max|φsep〉 |〈φsep|ξ〉|2.
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Partial transpose

Another computationally simple way to detect entanglement is to investigate the eigen-
values of a partially transposed state ρ [52]. A density matrix ρ that is composed out
of a sum of direct products (see Eq. 2.21) is separable. To examine the separability,
it is possible to construct a partial transpose of ρ and inspect its eigenvalues. While
all valid density matrices are positive operators and all eigenvalues λi are ∈ [0, 1] and∑2n

i=1 λi = 1, these constraints do not hold for partially transposed non-separable states.
Using proper indices {m,n, µ, ν} for the density matrix, Eq. 2.21 can be written as [10]

ρmµ,nν =
∑
i

pi
(
ρAi
)
mn

(
ρBCDi

)
µν
. (2.28)

Since {m,n} are indexing the first (A) and {µ, ν} the second subsystem (BCD) ac-
cording to the cut A|BCD, the partial transpose on ρ’s first subsystem A results in an
exchange of the Latin indices [52] m and n, such that

σmµ,nν ≡ ρnµ,mν ⇒ ρTA = σ. (2.29)

If now ρTA is again a valid density matrix, i.e. ρTA ≥ 0, ρ is not entangled according to
the separation of subsystem A to all other subsystems. According to Sec. 2.3.1, a four
qubit state may be for example a bi-product state of the form A|BCD. Enquiring the
entanglement with respect to the cut A|BCD, one does not detect any entanglement,
while other choices like AB|CD or B|ACD will prove the state to be entangled.

The partial transposition of a density matrix cannot only be used to detect entanglement,
but gives also a measure for the amount that ρTA fails to be a positive operator. This
measure is called bipartite negativity [53] and can be used as a quantitative measure of
entanglement [47].
While a two qubit state can only be splitted into A|B, three qubits can for example be
cut into A|BC, AB|C or AC|B as described in Sec. 2.3.1. Formally, the split A|BC
would then result in ρTA = (T ⊗ I⊗ I)ρ, where T denotes the transpose, which here only
acts on the first qubit. Thus, the negativity is given by

N(ρ) =
||ρTA ||1 − 1

2
, (2.30)

where ||ρTA ||1 corresponds to the trace norm of ρTA , i.e. ||ρTA ||1 =
∑2n

i=1 |λi| with ρTA ’s
eigenvalues λi [53]. Therefore, the negativity directly corresponds to the sum of nega-
tive eigenvalues [54]. Furthermore, the logarithmic negativity EN (ρ) = log2(||ρTA ||) =
log2(1 + 2N(ρ)) is often considered, too [53].

2.4.2 Trace distance

It is often needed to evaluate the distance between two quantum states. One basic
measure to do so is the trace distance D between the states ρ and σ [5]:

D(ρ, σ) ≡ 1

2
tr (|ρ− σ|) (2.31)
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with |ρ − σ| =
√

(ρ− σ)†(ρ− σ). Since ρ and σ are Hermitian matrices, D(ρ, σ) =
1
2

∑2n

i=1 |λi| where the λi are the eigenvalues of (ρ− σ).
The trace distance fulfils the properties

• D(ρ, σ) ≥ 0 ∀ρ, σ (non-negativity)

• D(ρ, σ) = 0 ⇐⇒ ρ = σ (identity of indiscernibles, Leibniz’ law)

• D(ρ, σ) = D(σ, ρ) ∀ρ, σ (symmetric in arguments)

• D(ρ, σ) ≤ D(ρ, µ) +D(µ, σ) ∀ρ, σ, µ (triangle inequality)

and is therefore a metric. The trace distance is a convex measure in its input arguments,
such that

D

(∑
i

piρi, σ

)
≤
∑
i

piD (ρi, σ) (2.32)

and analogously for the second argument [5].

2.4.3 Fidelity

While the trace distance was already introduced as a distance measure, another promi-
nent measure is given by the fidelity. While in some cases the square root fidelity
F̃ (ρ, σ) =

√
F (ρ, σ) = tr

√√
ρσ
√
ρ is used [5], the so called Uhlmann fidelity may be

more comprehensible - at least for pure states - if it is interpreted as a probability of
success of a quantum computation |〈ψ|φ〉|2, where |ψ〉 and |φ〉 represent the measured
and the target state, respectively. The Uhlmann fidelity [55], in the following just called
fidelity, is defined as [56]

F (ρ, σ) ≡
(

tr

√√
σρ
√
σ

)2

. (2.33)

If the target state is pure, i.e. σ = |ψ〉〈ψ|, the fidelity simplifies to F (ρ, |ψ〉) = 〈ψ|ρ|ψ〉,
which directly corresponds to the overlap of ρ and |ψ〉 [56]. While the interpretation of
the fidelity is convincing if one of the states is pure, it is less intuitive for two mixed
states [57].
The fidelity is symmetric under exchange of its arguments and is non-negative for all
density operators, but since it does not fulfil the identity of indiscernibles and the triangle
inequality, it is not a metric. Two possible ways to use the fidelity to build up a metric are
on the one hand the angle between the states ρ and σ withDA(ρ, σ) ≡ arccos

√
F (ρ, σ) [5]

and on the other hand construct the so called Bures metric DB(ρ, σ) ≡
√

2−
√
F (ρ, σ).

Furthermore, the trace distance and the fidelity are closely related, as it holds [56]

1−
√
F (ρ, σ) ≤ D(ρ, σ) ≤

√
1− F (ρ, σ). (2.34)

2.4.4 Hilbert-Schmidt distance

Besides the trace distance D(ρ, σ), the Bures metric DB(ρ, σ) and the angle between
states DA(ρ, σ), there are various other metrics and distance measures defined. One
of those is the Hilbert-Schmidt distance. First, one defines an inner product (scalar
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product) - the so called Hilbert-Schmidt inner product or equivalently the trace inner
product - to the space of density operators for two operators A and B as [58]

〈A,B〉 ≡ 1

2
tr(A†B). (2.35)

While [5] uses the inner product without the coefficient of 1
2 , here the definition of [58]

will be followed. Defining a distance with this inner product is possible. The Hilbert-
Schmidt distance is

DHS(ρ, σ) =
√

tr(ρ− σ)2. (2.36)

Using the parametrisation of ρ and σ in its correlations, Eq. 2.36 becomes

DHS(ρ, σ) =

√∑
i,j

(
T

(A)
ij − T

(B)
ij

)2
. (2.37)

The trace distance D(ρ, σ) and the Hilbert-Schmidt distance are related according to [59]

0 ≤ DHS(ρ, σ) ≤ 2D(ρ, σ). (2.38)

2.4.5 Purity

The purity P (ρ) = tr
(
ρ2
)

of a state is a measure that is related to the degree of mixed-
ness of a quantum state. For pure states ρ = |ψ〉〈ψ|, the purity is P (ρ) = tr

(
ρ2
)

=
tr (|ψ〉〈ψ||ψ〉〈ψ|) = tr (|ψ〉〈ψ|) = 1, while it decreases for states with increasing admix-
tures of other states. The lowest possible purity of 1/2n is obtained by the n qubit
maximally mixed state ρWN, see 2.5.8.

2.4.6 Entropy

According to Shannon’s definition of the entropy as a measure of the amount of in-
formation [25] with H(X) = −

∑
i p(xi) log(p(xi)) there is the quantum mechanical

counterpart

S(ρ) = − tr(ρ log(ρ)) = −
2n∑
i=1

λi log(λi) (2.39)

where S is the von Neumann entropy [60] and log denotes the logarithm to base two [5]4.
The von Neumann entropy can be seen as the Shannon entropy of the spectrum of
the density matrix ρ [58]. For pure states the von Neumann entropy directly vanishes
S(|ψ〉〈ψ|) = 0 while it reaches its maximum value for the maximally mixed state ρWN, i.e.
S(ρWN) = −

∑2n

i=1
1

2n log( 1
2n ) = log(2n) = n such that the maximally mixed state carries

the largest uncertainty. The entropy is a concave measure with S (
∑

i piρi) ≥
∑

i piS(ρi)
with

∑
i pi = 1 [5].

40 log 0 ≡ 0 is used for evaluating Eq. 2.39, which is justified by limx→0 x log x = 0.
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2.5 Prominent Quantum States

For investigating different features of quantum systems various quantum states have to
be considered. In the following, an overview of important quantum states, that are used
during this thesis, will given given.

2.5.1 Bell states

Four prominent two qubit states that feature maximal entanglement are the Bell states.
While the EPR state [61] |φ+〉 was already mentioned before, three other Bell states [5]
shall be defined:

|φ+〉 =
|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B√

2
, (2.40)

|φ−〉 =
|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B√

2
, (2.41)

|ψ+〉 =
|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B√

2
, (2.42)

|ψ−〉 =
|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B√

2
. (2.43)

The singlet state |ψ−〉 is invariant under rotations of equal SU(2) matrices [62]. The
four Bell states {|φ+〉, |φ−〉, |ψ+〉, |ψ−〉} together form an orthonormal basis of the two
qubit Hilbert space. The Bell states can be transformed into each other by unitary
transformations, such that [28]

|ψ−〉 ∝ (σ0 ⊗ σz)|ψ+〉 ∝ (σ0 ⊗ σx)|φ−〉 ∝ (σ0 ⊗ σy)|φ+〉, (2.44)

where the proportionality is due to some irrelevant global phases.

2.5.2 Greenberger-Horne-Zeilinger states

It was argued with the Bell state |φ(+)〉 in Eq. 2.17 that the measurement of |0〉A
directly implies the measurement outcome of Bob to be |0〉B and analogously for |1〉A
and |1〉B. While in this case only two parties, Alice and Bob, are involved, the state can
be extended to more qubits such that the measurement outcome on one qubit directly
determines the outcome of all other qubits to be the same outcome. For n qubits, a
possible GHZ (Greenberger-Horne-Zeilinger) state reads [63]

|GHZ〉 =
|0〉⊗n + |1〉⊗n√

2
. (2.45)

Interestingly, partially tracing out one qubit causes the loss of the entanglement of the
state. For n = 3 qubits, the GHZ state reads |GHZ〉 = |000〉+|111〉√

2
. Tracing out the third

qubit gives

tr3

[
1

2
(|000〉+ |111〉)(〈000|+ 〈111|)

]
=

1

2
(|00〉〈00|+ |11〉〈11|) = ρWN,2 (2.46)
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where ρWN denotes the maximally mixed state, which will be further explained in 2.5.8.

2.5.3 Dicke states

One important class of permutationally invariant states [64] are the Dicke states [65].

The Dicke state |D(e)
n 〉 is the symmetric state with e qubits in the excited state and

(n− e) qubits in their respective ground state. Therefore, the Dicke state is defined as
[66]

|D(e)
n 〉 =

(
n
e

)− 1
2 ∑

k

Πk

(
|1〉⊗e ⊗ |0〉⊗n−e

)
, (2.47)

where Πk(|ψ〉) denotes the k-th permutation of the qubits of |ψ〉. Since it is summed
over all permutations, the state is fully symmetric under exchange of any qubits. The

prefactor

(
n
e

)− 1
2

is just due to normalisation.

2.5.4 W states

The symmetric |W〉 state [45] and its counterpart, the |W〉 state, are the special cases
of the Dicke state with e = 1 excitations and e = n− 1 excitations, respectively, i.e.

|W〉 = |D(1)
n 〉, (2.48)

|W〉 = |D(n−1)
n 〉. (2.49)

The entanglement of the |W〉 state can for example be shown by the negativity of the
partial transpose5 or by using an entanglement witness [67].

Generalised W states

Motivated by these symmetric superpositions, a generalised form of the |W〉 state can
be defined6. |Wg〉 and |Wg〉 fulfil for the case of n = 3 qubits

|Wg〉 = λ|001〉+ µ|010〉+ ν|100〉, (2.50)

|Wg〉 = λ|110〉+ µ|101〉+ ν|011〉 (2.51)

with |λ|2 + |µ|2 + |ν|2 = 1. With this normalisation constraint the definition can be
reformulated as |Wg

3〉 = cos(α) sin(β)|001〉 + sin(α) sin(β)|010〉 + cos(β)|100〉 (and for
|Wg〉 analogously). Therefore, the generalised |Wg〉 state is obtained by a superposition
of the same states as the symmetric |W〉 state, but with coefficients freely chosen.

2.5.5 Graph states

Pure n qubit states that obey a vertex-and-edge structure are called Graph states [10].
Let G = (V,E) be a graph with the vertices V and the edges E. Each vertex a ∈ V

5The eigendecomposition of each possible partial transposition of |W3〉 delivers amongst others the

eigenvalue −
√

2
3

and is therefore according to Sec. 2.4.1 entangled.
6Please note that these generalised W states are, strictly speaking, no W states.
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corresponds to a qubit of the state, while each edge represents an interaction between
two qubits. When all vertices b that are connected to the vertex a via an edge are
grouped by the set of neighbouring vertices Na, to each vertex a Hermitian operator

K
(a)
G = σ(a)

x

∏
b∈Na

σ(b)
z (2.52)

may be assigned, where σ
(j)
i denotes the ith Pauli matrix acting on the jth qubit [68].

A state is a Graph state |G〉 if it is an eigenstate to all K
(a)
G ∀a ∈ V operators with the

eigenvalue 1, i.e.

K
(a)
G |G〉 = |G〉. (2.53)

Because of the property to correspond to a specific graph G = (V,E), the Graph states
can easily be drawn schematically. Different graphs are shown in Fig. 2.4. The graph

A B C

...

D E

Figure 2.4: Examples for graph states. Each red dot represents a vertex (qubit), while
the lines show the edges (interactions) in the graph formalism. “A” represents the Bell
state |φ+〉. “B” and “C” correspond to the states |GHZ3〉 and |GHZ4〉, respectively [69].
The general n qubit Greenberger-Horne-Zeilinger state |GHZn〉 can be represented by
the graph “D”. The graph “E”, depicting a four qubit state with linear next-neighbour

interactions, belongs to the Cluster state, see Sec. 2.5.6.

“B” in Fig. 2.4 corresponds to a three qubit Greenberger-Horne-Zeilinger state [10]. The
graph “C” depicts a four qubit state where all qubits have interaction with one single
qubit.This state corresponds (up to local unitary transformation) also to the already
introduced |GHZ〉 state [69]. While there is only one possibility to create a graph for
two (“A”) and three qubits (“B”), respectively, a four qubit graph can be built in
different ways. Besides the |GHZ〉 state in “C”, “E” depicts also a possible connection
of four qubits. This graph belongs to the four qubit Cluster state [70].

2.5.6 Cluster states

Cluster states [70] are special cases of the Graph states where the vertices are located in
a rectangular lattice structure [68]. The cluster state is of special interest for one-way
quantum computing [71], where it has been shown to be a resource for [72]. For the case
of one-dimensional ordered n qubits, i.e. the qubits build up a chain with next-neighbour
interactions, the cluster states for 2, 3 and 4 are defined as

|ψ2〉 = 1√
2
(|00〉+ |11〉), (2.54)

|ψ3〉 = 1√
2
(|000〉+ |111〉), (2.55)

|ψ4〉 = 1
2(|0000〉+ |0011〉+ |1100〉 − |1111〉). (2.56)
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The states |ψ2〉 and |ψ3〉 equal the |φ+〉 and the |GHZ3〉 states, respectively, and are
therefore depicted in Fig. 2.4 by the graphs “A” and “B”. |ψ4〉 is represented by the
graph “E” in Fig. 2.4. In contrast to the four qubit |GHZ〉 state, where losing one qubit
destroys the entanglement (Eq. 2.46), the cluster state |ψ4〉 is more persistent against
losing photons [70]. While the entanglement still lingers on after one photon is lost,
losing two photons can ruin the entanglement [28].

2.5.7 Smolin states

Not only pure states like the Bell states, the Greenberger-Horne-Zeilinger states |GHZ〉
or the Dicke states |D(e)

n 〉 exhibit entanglement, but instead this may also hold for mixed
states. One interesting mixed state is the Smolin [73] state, because it can be for example
used as a resource for multiparty communication schemes [74]. The generalised n = 2k
qubit form of the Smolin state is [75]

ρ
(n)
Smolin =

1

2n

(
In×n + (−1)k

3∑
i=1

σ⊗ni

)
, (2.57)

i.e. the elements of the correlation tensor are easily determined with T0...0 = 1, T1...1 =
T2...2 = T3...3 = (−1)k. The purity of the Smolin state decreases with the number

of qubits, that is tr((ρ
(n)
Smolin)2) = 1

2n−2 . Corresponding to the decreasing purity, the
rank of the Smolin state increases with the number of qubits n = 2k according to

rank(ρ
(n)
Smolin) = 2(n−2).

2.5.8 Maximally mixed states

Another important state that shall be discussed here is the n qubit maximally mixed
state or white noise. In contrast to the earlier mentioned pure states, this state is of full
rank: rank(ρWN) = 2n, where ρWN denotes the white noise

ρWN =
1

2n
I. (2.58)

The purity of the maximally mixed states is the lowest possible purity value of all states
with

tr
(
ρ2

WN

)
= tr

(
1

2n
I

1

2n
I
)

=
2n

4n
=

1

2n
. (2.59)

The eigendecomposition of the maximally mixed state gives 2n degenerate eigenvalues
of 1/2n. The corresponding eigenstates are any set of 2n mutually orthonormal states
forming a basis.

2.5.9 Random quantum state according to Haar measure

It can be helpful to simulate random states for numerical simulations. Therefore, a
short recipe will be given how equally distributed random states can be obtained. A
possible parametrisation for a single qubit was already given in Eq. 2.2 by |ψ〉 =
cos
(
θ
2

)
|0〉+ sin

(
θ
2

)
eiφ|0〉. It is obvious that choosing the parameters θ and φ uniformly
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[0, π] and [0, 2π], respectively, leads to a non-uniform distribution of states. In this case,
a randomly chosen state would lie with higher probability on one of the poles while the
density of an ensemble of these states would be lowest on the equator θ = π

2 . To over-
come this skewed distribution, θ may not be chosen uniformly, but instead according to
the inverse sine function sin−1. Thus, a u is uniformly chosen with u ∈ [−1, 1], while
θ = sin−1(u) + π

2 . Using this recipe, the random single qubit states are now uniformly
distributed around the Bloch sphere.
This technique can be generalised to find uniformly distributed n qubit states in their
state space. A good way to do so is to start with any n qubit state, e.g. |0〉⊗n. Af-
terwards, this state shall undergo an unitary transformation to deliver all pure n qubit
states with the same probability. A complete recipe to create random unitary matrices
whose distribution is in agreement with the Haar measure is according to [58, 76]

• Create a complex random 2n × 2n matrix Z with normally distributed matrix
elements.

• Find a QR decomposition of the random matrix with Z = QR.

• Build a diagonal matrix Λ with Λ = diag
(
r1,1
|r1,1| , . . . ,

r2n,2n

|r2n,2n |

)
, where (ri,i)i denote

the diagonal entries of the R matrix.

• Finally, U = QΛ is an unitary matrix whose density of eigenvalues is uniformly
distributed.

2.6 Optical components

For experimental preparation and application of entangled quantum states, it is crucial
to have a versatile toolbox. Since the experiments that this thesis is founded onto are
dealing with photonic systems, this toolbox is composed of optical devices that allow to
modify the polarisation of light. First of all, one requires a device to create entanglement,
i.e. a pair or a group of entangled photons. In the following section, an overview of the
most important utilities for photonic manipulation will be given.

2.6.1 Spontaneous parametric down conversion

Entangled states can be realised with different systems. One of the most important
methods - and the one used throughout this thesis - is based on employment of non-
linear crystals. Isotropic and linear materials are polarised parallel and proportional to
the incident electric field, i.e. [77]

~P = ε0χ~E, (2.60)

where ε0 denotes the vacuum permittivity and χ the electric susceptibility. Since Eq.
2.60 is only a linear approximation, while the polarisation indeed does not increase
linearly for all electrical fields ~E, the polarisation is better approximated by a power
series in ~E [78]

P = ε0

(
χE + χ(2)E2 + χ(3)E3 + . . .

)
(2.61)

now for scalar P and E and with χ(i) � χ(i+1). To drive the higher orders, appropriate
pump powers are needed, since the susceptibilities χ(i>1) are diminutive compared to
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χ. Consequently, only for high intensity of the electric field their corresponding term
becomes influential. Since isotropic substances have vanishing susceptibilities for even
powers in E due to the symmetry, that is χ(2i) = 0, it is crucial to study the anisotropic
case. For materials without inversion-centres the susceptibilities are not scalar, but
tensorial [77]. Therefore, the polarisation Pi along a direction i can be written as [79]

Pi( ~E) = ε0

 ∑
j∈{x,y,z}

χi,jEj +
∑

j,k∈{x,y,z}

χ
(2)
i,j,kEjEk +

∑
j,k,l∈{x,y,z}

χ
(3)
i,j,k,lEjEkEl + . . .

 .

(2.62)
The used crystal for spontaneous parametric down conversion (SPDC) allows to convert
pump photons into signal and idler photons in the three-wave mixing process [79], which
χ(2) has to be non-vanishing for. Since energy and momentum have to be conserved
during this process, the frequencies ωPump, ωSignal and ωIdler as well as the respective

wavevectors ~kPump, ~kSignal and ~kIdler are subject to the conditions [78]

~ωPump = ~ωSignal + ~ωIdler (2.63)

and
~~kPump = ~~kSignal + ~~kIdler. (2.64)

While Eq. 2.63 and Eq. 2.64 were derived in the photonic picture as energy and
momentum conservation, respectively, in the picture of incident and emitted waves,
the conditions ωPump = ωSignal + ωIdler (frequency-matching condition) and ~kPump =
~kSignal+~kIdler (phase-matching condition) have to fulfilled in the exact same manner [78].
The crystal used for the experimental preparations of this thesis is made of BBO (beta
barium borate). Depending on the orientation of the optical axis of the used crystal,
the phase-matching conditions are fulfilled by different constellations of frequencies and
wave-vectors. Therefore, different types of SPDC have to be distinguished, which will
be presented here in brief.

Type I

One possible solution for the phase-matching condition is matched if the incoming pump
photons’ polarisation is along the so called optical axis of the crystal [28]. These extraor-
dinary polarised photons are affected by a refraction index ne. The emitted photons
(signal and idler) are then polarised perpendicular to the crystal’s axis. For this ordi-
nary polarisation of the signal and the idler photons, the index of refraction is no with
ne < no for the case of negative, uni-axial crystals [79]. The incoming pump photons
can produce signal and idler photons, which are distributed along the surface of a cone.
The corresponding Hamiltonian reads as

Ĥtype I ∝ â†H b̂
†
H + H.c., (2.65)

where â†H is the creation operator of a photon in output mode a with the horizontal
polarisation. H.c. denotes the Hermitian conjugate. Depending on the orientation of
the crystal, the output can also be a pair of vertically polarised photons. Since signal
and idler photon are polarised in the same way, two crossed crystals have to be used
with indistinguishable cones in order to create entangled states. One crystal produces
for example |HH〉 photons, the other one |V V 〉. Their overlapping emission corresponds
to the entangled state ∝ |HH〉+ eiϕ|V V 〉.
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Type II

For type II phase-matching, the pump beam is polarised parallel to the optical axis of the
crystal. One of the signal and idler photons is polarised parallel, as well, while the other
one’s polarisation is perpendicular to the crystals optical axis [28]. The Hamiltonian of
type II sources for the non-collinear case along two modes where the two cones of signal
and idler emission intersect is found to be [80]

Ĥ
(ncol)
type II ∝

(
â†H b̂

†
V − â

†
V b̂
†
H

)
+ H.c.. (2.66)

The proportionality hides the coupling between crystal and pump field and depends
on χ(2) [79]. Acting on the vacuum, in first order a state like 1√

2
(|HV 〉 − |V H〉) is

created while the full expansion reads as |ψ〉 ∝ exp(−iα(â†H b̂
†
V − â

†
V b̂
†
H))|0〉 [81]. In the

collinear case, the entangled photons cannot be distinguished by spatial modes a and b.
Therefore, the Hamiltonian for the collinear case becomes [79]

Ĥ
(col)
type II ∝ â

†
H â
†
V + H.c.. (2.67)

In first order, the collinear SPDC type II source produces a pair with one horizontally and

one vertically polarised photon. The full term again reads |ψ〉 ∝ exp(−iαĤ(col)
type II) [28].

Therefore, the emission of ith order corresponds to i horizontally and i vertically po-
larised photons while the probability for emission in ith order is 2iα2i

2α2 normalised to the
probability of emission in first order [28]. For the full derivation and higher order terms
of the states, see [79].

Figure 2.5: SPDC Type II sources. The left figure shows the general non-collinear
case, while the right one depicts the special case of a collinear source. The red beams
illustrate the entangled photons, that are used for the experiments. In the collinear
case, the red beam is degenerate and overlaps with the pump beam. The incoming
pump beam is partially transmitted through the non-linear crystal. Probabilistically,
signal and idler photons are produced. By collecting the photons and the spots of

intersection of the cones one obtains an entangled state.

2.6.2 Wave plate

For the experimental realisation of state preparation and analysis, it is crucial to be
also able to rotate the polarisation of photons. The method of choice is to use wave
plates [77]. The general property of these retarding elements is that the birefringent
material causes different propagation of the so called ordinary and the extraordinary
beams. Different refraction indices for the corresponding polarisations cause a phase
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shift between those two beams. The phase difference between the ordinary beam, which
is polarised perpendicular to the optical axis of the birefringent crystal, and the extraor-
dinary beam, whose polarisation is parallel to the optical axis, after the propagation
through the wave plate is given by

∆ϕ =
2π

λ
(nslow − nfast), (2.68)

where λ denotes the wavelength of the incident light, d the thickness of the wave plate and
n corresponds to the refraction index along the slow and the fast axis, respectively. Note
that in general the indices of refraction can also be wavelength dependent, i.e. nslow ≡
nslow(λ) and nfast ≡ nfast(λ) [78]. The two special cases with the most importance are
the half-wave plate (HWP or λ/2 plate) and the quarter-wave plate (QWP or λ/4 plate).
While the half-wave plate is able to rotate any linear polarisation to any other linear
polarisation, the quarter-wave plates can change the polarisation from linear polarisation
directions to circular and vice versa. For suitably chosen thickness d it is possible to
achieve a phaseshift of ϕ = π

2 in the case of the quarter-wave plate and a phaseshift of
ϕ = π for the half-wave plate. The transformation matrices of the HWP and the QWP
are given by [79]

THWP(θ) =

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
= sin(2θ)σx + cos(2θ)σz (2.69)

for the half-wave plate and

TQWP(θ) =

(
cos2(θ)− i sin2(θ) (1 + i) sin(θ) cos(θ)

(1 + i) sin(θ) cos(θ) −i cos2(θ) + sin2(θ)

)
=

1

2
((1− i)σ0 + 2(1 + i) cos(θ) sin(θ)σx + (1 + i) cos(2θ)σz).

(2.70)

for the quarter-wave plate.

2.6.3 Yttrium-vanadate crystals

Although it is possible by a combination of HWP and QWP plates to transform to all
desired polarisations, it is often useful to modify solely the phase between the horizontal
and vertical polarisation, i.e. to set the phase γ within cos( θ2)|0〉 + sin( θ2)eiγ |0〉. This
can be done with birefringent Yttrium-vanadate crystals YVO4 [28] which are rotated
around their optical axes such that the phase of the perpendicular orientated horizontal
polarisation is shifted relative to the vertical polarisation. The corresponding operation
can be written as [79]

TYVO(φ) =

i cos
(
φ
2

)
+ sin

(
φ
2

)
0

0 i cos
(
φ
2

)
− sin

(
φ
2

) = i cos

(
φ

2

)
σ0 + sin

(
φ

2

)
σz.

(2.71)

2.6.4 Beam splitters

It is furthermore often needed to either overlap different beams or to split up a single
beam into two. A practical way to do so is given by beam splitters. According to the
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b

a

b'

a'

Figure 2.6: A schematic picture of a beam splitter. The input modes a and b are
transformed into the output modes a′ and b′, depending on the transmittivity and the

reflectivity.

naming in Fig. 2.6 a beam splitter has two input modes a and b, as well as two output
modes a′ and b′. Light that is radiated onto mode a can be transmitted to a′ or reflected
and pass by b′. According to [28] the transformations of an ideal beam splitter read as

â†H → 1√
2

(
TH â

′†
H + iRH b̂

′†
H

)
, (2.72)

â†V → 1√
2

(
TV â

′†
V + iRV b̂

′†
V

)
, (2.73)

b̂†H → 1√
2

(
TH b̂

′†
H + iRH â

′†
H

)
, (2.74)

b̂†V → 1√
2

(
TV b̂

′†
V + iRV â

′†
V

)
, (2.75)

where TH , TV , RH and RV denote the transmittivity and reflectivity for horizontally
and vertically polarised light, respectively. One important special case is the 50 : 50
beam splitter, that transmits and reflects light with the same probability, i.e. ideally
|TH |2 = |TV |2 = |RH |2 = |RV |2 = 1

2 [28]. Of high practical importance is also the
polarising beam splitter (PBS). While horizontally polarised light is fully transmitted
through the PBS, vertically polarised photons are reflected. Therefore, |TH |2 = |RV |2 =
1 and |TV |2 = |RH |2 = 0. PBS are in general used for the polarisation analysis, see
2.6.5.

2.6.5 Polarisation Analysis

After preparation of quantum states, their polarisation degree of freedom has to be in-
vestigated. The usual way to enquire the photons’ polarisation is depicted in Fig. 2.7.
Incoming photons pass through a half-wave plate and a quarter-wave plate before prop-
agating through a polarising beam splitter. Since the PBS is only able to distinguish
between two orthogonal polarisations, usually chosen as horizontal and vertical polar-
isation, one uses the wave plates to be also able to measure in σx and in σy basis. If
the measurement protocol for example requires a measurement in σx basis, the HWP is
rotated to θ = π/8 since THWP(π/8) = 1√

2
(σx + σz). Therefore THWP(π/8)|P 〉 = |H〉

and THWP(π/8)|M〉 = |V 〉 and thus, a measurement in the σx basis can be performed.
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PBS
APD

HWP

QWP

Figure 2.7: The polarisation analysis is done with half- and quarter-wave plates,
which determine the measurement basis. A polarising beam splitter finally splits up the
incident light according to its polarisation. Photonic events are noticed with avalanche

photo diodes.

The HWP and QWP allow measurements in any direction, although the standard mea-
surement bases are the σx, σy and σz bases.

2.7 State tomography

After all, the step of assembling a density matrix by means of measurement data will
be illuminated here. Since the entries of the correlation tensor are given by Tµ1...µn =
tr[ρ(

⊗n
i=1 σµi)] (see Eq. 2.19), it is essentially sufficient to measure in the

⊗n
i=1 σµi basis

to determine Tµ1...µn . Naively, one would assume that measurements in 4n bases would
be required since µi ∈ {0, 1, 2, 3} for all n indices µi. In contrast, measurements of only
σx, σy, σz are adequate to describe the state. The leftover elements of the correlation
tensor containing µi = 0 are not needed to be determined experimentally, but can be
obtained from the 3n directions. Therefore, one may now measure {σx ⊗ · · · ⊗ σx ⊗
σx, σx⊗· · ·⊗σx⊗σy, σx⊗· · ·⊗σx⊗σz, . . . , σz⊗· · ·⊗σz⊗σz}. According to Sec. 2.6.5,
it is possible to detect both the events of | ↑〉i as well as the | ↓〉i at the same time, such
that 2n different outcomes are recorded simultaneously. These detection events will be
called cSi , where S denotes the corresponding measurement setting and i reports to which
outcome this number of events belongs, i.e. cXX...X00...0 indicates the number of detected
events by projection onto |PP . . . P 〉. For the state reconstruction, one is interested in
the relative number of counts instead of the absolute number cSi . Thus,

fSi =
cSi∑
j c
S
j

=
cSi
NS

, (2.76)

where j labels all possible outcomes in basis setting S. NS denotes the total number of
events per basis setting S.
Since one detects the relative number of counts of, for example, the projection onto
|PP . . . P 〉 and onto |MP . . . P 〉, it is easy to obtain out of this σx ⊗ σx ⊗ · · · ⊗ σx
measurement also the σ0 ⊗ σx ⊗ · · · ⊗ σx measurement. Because this holds for all bases,
the correlations containing one or more σ0 measurements are determined implicitly by
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a multitude of other measurements. Thus, it is self-evident to use all contributing
measurements to reduce the statistical error of these non-full correlations. Finally, the
reconstructed density matrix for n qubits can be written as [28]

ρ =
1

2n

3∑
µ1,...,µn=1

1∑
i1,...,in=0

f
S(µ1,...,µn)
i

n⊗
j=1

(
1

3
σ0 + (−1)ijσµj

)
(2.77)

with S = S(µ1, . . . , µn) denoting the measurement basis. A set of possible measurement
operators to determine the relative number of counts per basis setting are given by

MS
i ≡M

S(µ1,...,µn)
i =

n⊗
j=1

1

2

(
σ0 + (−1)ijσµj

)
. (2.78)

With these, the frequencies fSi can be determined according to

fSi = tr
(
ρMS

i

)
. (2.79)

For infinite number of repetitions, the relative numbers of counts fSi as given in Eq. 2.76
converge to these probabilities Pρ(i|S) = tr(ρtheoMS

i ) of a theoretical state. A detailed
derivation of an equivalent description to Eq. 2.77 can be found in [28].
As given in Eq. 2.19, the density matrix can be parametrised with its correlations. Each
correlation can be written in terms of the number of counts, such that

Tµ1...µn =

∑1
i1,...,in=0 g(µ1, . . . , µn; i1, . . . , in)cµ1...µn

i1...in∑1
i1,...,in=0 c

µ1...µn
i1...in

, (2.80)

where the function g(µ1, . . . , µn; i1, . . . , in) determines the parity of the corresponding
outcome, see also A.2.1 for a definition of g(µ1, . . . , µn; i1, . . . , in). While Eq. 2.80 seems
rather bulky, the expression becomes more comprehensible by the n = 2 qubit example
of the correlation T11, which is given by

T11 =
c11

00 − c11
01 − c11

10 + c11
11

c11
00 + c11

01 + c11
10 + c11

11

. (2.81)

The different signatures in the numerator are due to the parity function g. The parity
of c11

00 and of c11
11 is even while c11

01 and c11
10 have odd parity.

According to Eq. 2.77 the non-full correlations like σ0 ⊗ σx can be computed with
reduced statistical variance. Possible ways to compute T01 out of the measured data are

T01 =
c11
00−c11

01−c11
10+c11

11

c11
00+c11

01+c11
10+c11

11
, T01 =

c21
00−c21

01−c21
10+c21

11

c21
00+c21

01+c21
10+c21

11
as well as T01 =

c31
00−c31

01−c31
10+c31

11

c31
00+c31

01+c31
10+c31

11
. The error

of T01 can now be reduced by using the average over all three possible ways to compute
the correlation. With Gaussian error propagating the error of T01 = 1

3(T11 + T21 + T31)
is reduced:

∆T01 =

√(
∂T01

∂T11

)2

(∆T11)2 +

(
∂T01

∂T21

)2

(∆T21)2 +

(
∂T01

∂T31

)2

(∆T31)2

=
1

3

√
(∆T11)2 + (∆T21)2 + (∆T31)2.

(2.82)

Therefore, full correlations come with largest statistical deviations since they can only be
computed in a single way while non-full correlation tensor elements can be decomposed
into more contributing measured outcomes which reduces the statistical scatter.
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No Correlations

3.1 Introduction

In Sec. 2.3, the way how entanglement was introduced suggested a close relationship
between the entanglement of a state and the correlations of the measurement outcomes.
Naively, one would expect genuinely n-partite entangled states to exhibit n-particle
correlations. Accordingly, a tripartite state would be expected to be separable if no
correlations between the measurement outcomes of the three parties can be observed.
Rather, in this chapter genuinely tripartite entangled states will be studied, where no
full correlations can be observed. This at first glance unexpected and strange behaviour
will be discussed in detail. Firstly, a particular state with the aforementioned proper-
ties will be theoretically presented. Secondly, this phenomenon will be generalised to a
class of states. A recipe will be given how one can obtain a mixture of two states with
odd number of qubits that show no n-partite correlations. And thirdly, experimental
preparation of an exemplary state and its analysis will be discussed. This state will be
proven to be entangled while having vanishing full correlations.

3.2 State with vanishing full correlations

According to Sec. 2.5.4 the (symmetric) |W3〉 state is defined as

|W3〉 = |D(1)
3 〉 =

1√
3

(|001〉+ |010〉+ |100〉). (3.1)

The |W3〉 state is entangled (see Sec. 2.3.1) and shows correlations between all qubits.
Consider for example the case that the measurements on the first and the second qubit
give the results |0〉A and |0〉B, respectively. Then, by knowing these measurement out-
comes, the measurement result on the third qubit can easily be determined to be |1〉C .
In this case it is trivially clear that not even the knowledge of the exact measurement
results is needed, but only their correlation to determine the third outcome. Knowing
the first two qubits in the same state, which in this case is equivalent to knowing both
in state |0〉, lets one directly infer that the third qubit is in state |1〉. If the third party

25
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Correlation Measurement |W3〉 |W3〉
T000 σ0 ⊗ σ0 ⊗ σ0 1 1
T003 σ0 ⊗ σ0 ⊗ σz 1/3 −1/3
T011 σ0 ⊗ σx ⊗ σx 2/3 2/3
T022 σ0 ⊗ σy ⊗ σy 2/3 2/3
T030 σ0 ⊗ σz ⊗ σ0 1/3 −1/3
T033 σ0 ⊗ σz ⊗ σz −1/3 −1/3
T101 σx ⊗ σ0 ⊗ σx 2/3 2/3
T110 σx ⊗ σx ⊗ σ0 2/3 2/3
T113 σx ⊗ σx ⊗ σz 2/3 −2/3
T131 σx ⊗ σz ⊗ σx 2/3 −2/3
T202 σy ⊗ σ0 ⊗ σy 2/3 2/3
T220 σy ⊗ σy ⊗ σ0 2/3 2/3
T223 σy ⊗ σy ⊗ σz 2/3 −2/3
T232 σy ⊗ σz ⊗ σy 2/3 −2/3
T300 σz ⊗ σ0 ⊗ σ0 1/3 −1/3
T303 σz ⊗ σ0 ⊗ σz −1/3 −1/3
T311 σz ⊗ σx ⊗ σx 2/3 −2/3
T322 σz ⊗ σy ⊗ σy 2/3 −2/3
T330 σz ⊗ σz ⊗ σ0 −1/3 −1/3
T333 σz ⊗ σz ⊗ σz −1 1

Table 3.1: Correlation values of the |W3〉 and |W3〉 states. All full correlations are
opposite.

on the other hand knows that the first two outcomes were anticorrelated, i.e., one mea-
sured |0〉 and the other measurement resulted in |1〉, the third outcome is surely |0〉.
So, please, note that already the knowledge of the correlation of two qubits is sufficient
for the |W3〉 state to infer the third measurement outcome. One does not need the
information of the exact outcomes. Of course, this holds equivalently for the |W3〉 state
where the occurrences of the ground and the excited states are exchanged such that
|0〉 ↔ |1〉. In this case, knowing two qubits being correlated allows one to infer the third
measurement outcome |0〉 while anticorrelation points to |1〉 for the third qubit. Tab.
3.1 lists all possible, non-vanishing correlations, full and non-full1, for the states |W3〉
and |W3〉.

Note that the |W3〉 and the |W3〉 state show opposite full correlations, as listed in Tab.
3.1. Consequently, this poses the question what the state might look like if these two
states are combined in that way that their full correlations add up to zero. Is the resulting
state still entangled? Can the state be prepared such that no full correlations remain?
The full correlations of |W3〉 and |W3〉 shall vanish by just adding them. According to
Eq. 2.19, the two states have to be incoherently summed, not superposed. Therefore,
the state of interest is

ρNC,3 = 0.5(ρW3 + ρW3
) = 0.5

(
|W3〉〈W3|+ |W3〉〈W3|

)
. (3.2)

1The discrimination between full and non-full correlations is of high importance here. The term “full
correlation” (n-partite correlation) references to a correlation where on each qubit a measurement in σx,
σy or σz basis is performed. In contrast, for example T110 ≡ TXX0 labels the “non-full correlation” of
the measurement of σx ⊗ σx ⊗ σ0. Evidently, a state without any correlations is the maximally mixed
state (Sec. 2.5.8).
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This state will be called no correlation state and will be labelled with ρNC,3. Writing
ρNC,3 in terms of its correlations, it reads as

ρNC,3 =
1

23

(
σ⊗3

0 +
2

3
Π (σ0 ⊗ σx ⊗ σx) +

2

3
Π (σ0 ⊗ σy ⊗ σy)−

1

3
Π (σ0 ⊗ σz ⊗ σz)

)
,

(3.3)
where Π corresponds to summing over all permutations of the respective Pauli matrices,
i.e. Π(σ0 ⊗ σx ⊗ σx) = σ0 ⊗ σx ⊗ σx + σx ⊗ σ0 ⊗ σx + σx ⊗ σx ⊗ σ0. One directly
sees that there is no full correlation and all remaining correlations of ρNC,3 are non-full
correlations. The difference in the predictability by either full knowledge or only the
correlations will be further illumined in Sec. A.3.

The effect of being genuine n-partite entangled with vanishing n-partite correlations is
not restricted to this particular mixture of equal amounts of the symmetric |W3〉 and
|W3〉 states. Instead, this phenomenon can be generalised which will be shown Sec. 3.3.1.
On the other hand, the ρNC,3 state as given in Eq. 3.2 is suitable for an experimental
study.

3.3 Entanglement with generalised class of states

The result of the previous section, where the state ρNC,3 = 1
2(|W3〉〈W3| + |W3〉〈W3|)

was prepared, can be generalised. Not only the mixture of the symmetric |W3〉 state
together with the state |W3〉 fulfils the requirement of showing tripartite entanglement
while having vanishing full correlations. In this section, the general form of |Wg

3〉 states
is considered, which was defined as

|Wg
3〉 = λ|001〉+ µ|010〉+ ν|100〉. (3.4)

First, an approach will be presented, how the “antistate” |ψ〉 can found. Furthermore,
an investigation concerning the entanglement of the mixture will be shown.

The term “antistate” refers to the state that one has to mix with the given state |ψ〉
to obtain a genuinely entangled state without n-partite correlations, i.e. the state ρ =
1
2(|ψ〉〈ψ|+|ψ〉〈ψ|) is considered. For example, |W3〉 and |W3〉 are, using this terminology,
antistates with respect to each other. Using |Wg

3〉 as |ψ〉 results in a series of states with
not only vanishing full correlations, but also with genuine tripartite entanglement.

3.3.1 Antistates

Here, the case of states with odd number of qubits will be treated, only. Consider the
state |ψ〉 parameterised in the form

|ψ〉 =

1∑
µ1,...,µn=0

αµ1,...,µn |µ1 . . . µn〉. (3.5)

The corresponding antistate can be found by applying the operator (σzσxK̂)⊗n onto
the state |ψ〉 where the operator K̂ denotes complex conjugation [13]. Therefore, the
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antistate of |ψ〉 is obtained to be

|ψ〉 = (σzσxK̂)⊗n|ψ〉 =

1∑
µ1,...,µn=0

(−1)(µ1+···+µn)α∗1−µ1,...,1−µn |µ1 . . . µn〉. (3.6)

This scheme can be tested easily for the already known state |ψ〉 = |W3〉, where α1,0,0 =

α0,1,0 = α0,0,1 =
√

1
3 . This directly leads to the antistate |ψ〉 = α∗1,0,0|011〉+α∗0,1,0|101〉+

α∗0,0,1|110〉 =
√

1
3(|011〉+ |101〉+ |110〉) = |W3〉, which is in agreement with the discussed

state ρNC,3.

Note that this scheme results in a mixed state with vanishing full correlations, but up to
now no statement about the entanglement of this state is made. Consider for example
the Greenberger-Horne-Zeilinger state with n = 3 qubits, which can be chosen to be

|ψ〉 = |GHZ〉 =
√

1
2(|000〉 + |111〉). Writing this state in terms of Eq. 3.5, one obtains

αGHZ
0,0,0 = αGHZ

1,1,1 =
√

1
2 . Applying the presented method to find the antistate |ψ〉 = |GHZ〉,

one obtains αGHZ
0,0,0 =

√
1
2 and αGHZ

1,1,1 = −
√

1
2 . Therefore,

|ψ〉 = |GHZ〉 =
|000〉 − |111〉√

2
. (3.7)

Mixing these states according to ρGHZ,GHZ = 1
2(|GHZ〉〈GHZ| + |GHZ〉〈GHZ|) results

in the state ρGHZ,GHZ = 1
2(|000〉〈000| + |111〉〈111|), which is far from being entangled.

Consequently, not all states deliver genuinely entangled states when mixed with their
antistates. This discussion will be deepened in the next section for the generalised |Wg〉
states with n = 3 qubits.

3.3.2 Genuine tripartite entanglement for |Wg〉

Here, the entanglement of the generalised |Wg
3〉 state, with an appropriate parameteri-

sation defined as

|ψ〉 = |Wg
3〉 = cos(α) sin(β)|001〉+ sin(α) sin(β)|010〉+ cos(β)|100〉, (3.8)

mixed with its antistate

|ψ〉 = |Wg
3〉 = cos(α) sin(β)|110〉+ sin(α) sin(β)|101〉+ cos(β)|011〉 (3.9)

will be investigated. For α, β ∈ [0, π2 ] some special cases occur where no genuine tripartite
entanglement can be detected. Firstly, for the cases of

a) α ∈ [0, π2 ], β = 0

b) α = 0, β = π
2 and

c) α = π
2 , β = π

2
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Figure 3.1: The upper bound for the maximally achieved value for L =
maxTbi−prod(T, T bi−prod)G for the state of equal amounts of a generalised |ψ〉 = |Wg

3〉
state and its corresponding antistate |ψ〉 = |Wg

3〉 is shown as a contour plot. The outer
frame, where α ∈ {0, π2 } or β ∈ {0, π2 } holds, are the only states with no genuine tri-
partite entanglement. For all states within this frame, the maximally achieved value
of L is clearly below R = 3, which indicates tripartite entanglement [13]. The spot at

α = π/4 ≈ 0.79 and β = cos−1
(√

1/3
)
≈ 0.96 corresponds to the no correlation state

ρNC,3. For this state, the value of L can bounded from above by 7/3, clearly revealing
entanglement.

the mixed state is fully separable. For example, in case a) the state becomes

ρ =
1

2
(|ψβ=0〉〈ψβ=0|+ |ψβ=0〉〈ψβ=0|)

=
1

2
(|100〉〈100|+ |011〉〈011|)

=
1

2
(|1〉〈1| ⊗ |0〉〈0| ⊗ |0〉〈0|+ |0〉〈0| ⊗ |1〉〈1| ⊗ |1〉〈1|) ,

(3.10)

which is clearly not entangled at all. Case b) results in 1
2(|001〉〈001|+ |110〉〈110|) while

c) corresponds to 1
2(|010〉〈010|+ |101〉〈101|). In all cases, the state is the mixture of two

fully separable states.

Secondly, for specific choices of α and β the mixture of |ψ〉 and |ψ〉 becomes bi-separable:
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d) α ∈ (0, π2 ), β = π
2 ,

e) α = 0, β ∈ (0, π2 ) and

f) α = π
2 , β ∈ (0, π2 ).

Case d) leads to a state

ρ =
1

2
(|ψβ=π/2〉〈ψβ=π/2|+ |ψβ=π/2〉〈ψβ=π/2|)

=
1

2

[
|0〉〈0| ⊗

(
cos(α)2|01〉〈01|+ cos(α) sin(α)|01〉〈10|

+ cos(α) sin(α)|10〉〈01|+ sin(α)2|10〉〈10|
)

+|1〉〈1| ⊗
(

cos(α)2|10〉〈10|+ cos(α) sin(α)|10〉〈01|
+ cos(α) sin(α)|01〉〈10|+ sin(α)2|01〉〈01|

)]
,

(3.11)

being bi-separable according to A|BC. Analogously, the states of case e) are bi-separable
with respect to the cut B|AC while f) corresponds to AB|C.

The entanglement can be detected via the criterion using the correlation tensor as given
in Sec. 2.4.1. For that purpose, one has to maximise over all bi-separable states. If then
L = maxT̂bi−prod(T̂, T̂ bi−prod)G < (T̂, T̂ )G = R holds, the state ρ with its correlation

tensor T̂ is genuinely entangled. As shown in Sec. A.5 and in [13], R = 3 holds for all
α and β for the right-hand side. The optimisation over bi-separable states is performed
to obtain values for the left-hand side L, the calculation for R and the result obtained
for L is outlined in Sec. A.5. In full agreement with the already discussed cases of a) -
f), only the states where α ∈ {0, π2 } or β ∈ {0, π2 } are not genuinely tripartite entangled.
This situation is illustrated in Fig. 3.1, where the respective value for the left-hand side
L is shown for the possible values of α and β. All values with L < 3 indicate genuine
tripartite entanglement. The limit value of 3 can only be reached if at least one of the
expressions sin(α), cos(α), sin(β) or cos(β) vanishes.

3.4 Experimental preparation

This section explains the experimental setup for state preparation and describes the
obtained measurement results. The experimental preparation of the state of interest

ρNC,3 = 0.5(ρW3 + ρW3
) can be based on preparing the four qubit Dicke state |D(2)

4 〉
with

|D(2)
4 〉 =

√
1

6
(|HHV V 〉+ |HVHV 〉+ |HV V H〉+ |V HHV 〉+ |V HV H〉+ |V V HH〉) .

(3.12)
Afterwards, tracing out one qubit (without loss of generality the last qubit) [5] of the
measured state results in the desired quantum state ρNC,3, i.e.

tr4(|D(2)
4 〉〈D

(2)
4 |) =

1

2
(|W3〉〈W3|+ |W3〉〈W3|) = ρNC,3. (3.13)

The full derivation of Eq. 3.13 can be found in Sec. A.4.
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3.4.1 State preparation

To create the desired photonic four qubit Dicke state |D(2)
4 〉, a spontaneous parametric

down conversion source with type II phase matching is used with pumping power high
enough to enable fourfold coincidences. Initially, a Nd : YVO4 laser with 10 W output
power is used to pump a mode-locked Titan-Sapphire laser with pulse lengths of 130 fs
and a repetition rate of 80 MHz [51]. The emitted light pulses with a centre wavelength of
780 nm are frequency-doubled by a lithium borate (LBO) crystal to achieve a wavelength
of 390 nm. The pumping of the BBO (beta barium borate) crystal is then accomplished
by using a bow-tie shaped cavity as depicted in Fig. 3.2. Essential requirements for
adjustments of the cavity, like matching the round trip time of the laser pulse with the
frequency of the additionally incoming pulses, i.e. locking the phases of the cavity to
resonance [82], matching carrier envelope frequencies [83] and minimising the dispersion
inside the cavity [84], are discussed in detail in [51, 85]. The BBO crystal inside the

LBO

Nd:YVO4 (c.w.)

532 nm, 10 W

Ti:sapphire

130 fs, 

780 nm, 2 W

BBO BBO SM bre

Cavity

Spectro-

meter
Pol.-

locking

Figure 3.2: The SPDC source with type II phase matching (see Sec. 2.6.1) is used
for creating entangled photons. Corresponding to the down conversion described in
[85], a cavity with piezo-mounted mirrors is used which is pumped with a pulsed laser
with 130 ns pulses @390 nm. A beta barium borate crystal of 1 mm thickness is
used as the non-linear SPDC crystal inside the cavity. For compensation of walk-off
effects between horizontal and vertical polarised photons, another BBO crystal with

half thickness (0.5 mm) is used outside the cavity [85].

cavity is aligned for collinear type II phase-matching, see Sec. 2.6.1 and especially Eq.
2.67. In first order emission a pair of one horizontally and one vertically polarised
photons are emitted while in second order emission two photons for each of those two
polarisations are emitted. Thus, this second order emission events are of interest for the
four qubit Dicke state presented here. Please note that also events of even higher orders
may occur (see Sec. 2.6.1). The used pump power was P = 0.66 ± 0.06 W. While a
higher pump power results in a higher rate of events, higher orders of emission contribute
more. The used pump power is a good compromise of state quality and measurement
time.

3.4.2 Analysis and measurement

After preparing the desired state as explained in the previous section and shown in
Fig. 3.2, the state has to be measured. For that purpose a linear setup as shown in
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Fig. 3.3 is used. The single mode fibre is directly connected to the aforementioned
state preparation. Since a collinear configuration is applied, all created signal and idler
photons are emitted in this spatial mode. An interference filter from Semrock with
spectral bandwidth of 3 nm is used for spectral selection [51]. Afterwards, probabilistic

SM bre

BS YVOs PBS APD

HWP
QWP

a

b

c

d

IF

Figure 3.3: Since the prepared Dicke state |D(2)
4 〉 is permutationally invariant, the

distribution of the photons into the four spatial modes a, b, c and d are performed
with probabilistic beam splitters (BS). Spectral indistinguishability of the photons is
improved with an interference filter. YVO4 crystals are used for compensating birefrin-
gence of the beamsplitters [86] and setting the phase of the output modes [28]. They
are used pairwise to achieve a zeroth order behaviour. Finally, the polarisation state
in each mode is determined by using a polarisation analysis setup as explained in Sec.

2.6.5.

(50 : 50, see Sec. 2.6.4) beamsplitters split up the incoming light to measure in the four
spatial modes a, b, c and d. This leads to a permutationally invariant state of 4 qubits.
Since the source is producing two photons with horizontal and two photons with vertical

polarisation, the resulting state is the Dicke state |D(2)
4 〉2. In each spatial mode, a pair

of Yttrium-vanadate crystals (YVO4, see Sec. 2.6.3) is used to compensate birefringent
phase shifts of the beamsplitters [51]. The YVO4 crystals of 200µm thickness are used
pairwise with perpendicular orientation of optical axes [51]. This ensures a low order
behaviour of the configuration and decreases wavelength dependencies. Finally, the
qubits are analysed by using a polarisation analysis stage as described in Sec. 2.6.5

2While one wants to prepare the Dicke state with four qubits and two excitations, i.e. the symmetric
superposition of all permutations of |HHV V 〉, also higher orders may contribute. Consider the next

higher order state with
√

1
20

(|HHHV V V 〉 + |HHV V V H〉 + · · · + |V V V HHH〉). Since only fourfold

events are detected, this six qubit state can also contribute by losing two of its photons [86]. The
measured state thus contains also admixtures of |HHHV 〉+ |HHV V 〉+ · · ·+ |V V V H〉, which is directly

obtained by losing two qubits, e.g. the last two qubits, of |D(3)
6 〉. While only the four qubit Dicke state

with two excitations is aimed to be prepared, now admixtures of four qubit Dicke states with one and
three excitations can be detected. By even smaller chance, the fourth order of the SPDC can be pumped,
where eight photons are emitted. This leads to even lower additional admixtures of |D(0)

4 〉 = |HHHH〉
and |D(4)

4 〉 = |V V V V 〉.
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with a set of a half- and and a quarter-wave plate, a polarising beamsplitter and two
single-photon avalanche photo diodes (APDs).

3.4.3 Tomography of |D(2)
4 〉

Here, the tomographic results of the state preparation are presented. First, the state
obtained by a full quantum state tomography will be discussed. Afterwards, one qubit
of the obtained quantum state will be projected on |V 〉 and |H〉 to receive a |W3〉 and
a |W3〉 state, respectively. Furthermore, one qubit will be traced out to finally obtain
the desired mixed state ρNC,3. This state will be used to show that its full correlations
vanish while still being genuinely tripartite entangled.

Full tomography

The prepared state is tomographically analysed by means of the Pauli tomography
scheme [15] with overcomplete measurement data (see Sec. 2.7), i.e. measurements
are performed for all different combinations of 34 Pauli matrices (σ⊗4

x , σx⊗σx⊗σx⊗σy,
. . . , σ⊗4

z ). While already 44 − 1 outcomes are sufficient for a complete tomography [15],
here an overcomplete tomography is carried out. For each of the 34 measurement settings
all 24 possible outcomes are monitored at the same time since for each of the four qubits
two possible outcomes exist. Thus, 34 · 24 = 64 measurement outcomes are registered.

0
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Figure 3.4: Real and imaginary part of the reconstructed density matrix obtained

by full quantum state tomography of the experimental |D(2)
4 〉 state. The fidelity with

respect to the target state |D(2)
4 〉 is F (ρ, |D(2)

4 〉) = 0.92.

The total measurement time of the executed tomography is more than 132 hours, where
about NS ≈ 1846 events are detected per basis setting on average. The resulting state,
whose density matrix is shown in Fig. 3.4, gives a fidelity with respect to the desired

Dicke state |D(2)
4 〉 of F

(
ρ, |D(2)

4 〉
)

= 0.920±0.005. The overlap with states contributing

due to higher order emissions is F
(
ρ, |D(1)

4 〉
)

= 0.033 ± 0.004 and F
(
ρ, |D(3)

4 〉
)

=

0.010± 0.004, respectively.
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|W3〉 and |W3〉 states and their mixture

For projecting one of the qubits of the measured Dicke state |D(2)
4 〉 onto |V 〉 or onto

|H〉 one obtains a |W3〉 and a |W3〉 state, respectively. To obtain the mixture of those
states according to Eq. 3.13, one qubit of the measured Dicke state has to be traced
out. Thus, obtaining the data for the “no correlation state” ρNC,3 can be easily done.
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Figure 3.5: The real parts of the density matrices of |W3〉, |W3〉 and ρNC,3 are shown.
The imaginary parts of these states are close to zero (theoretically vanishing) and are
therefore not depicted. The states are obtained from the measured four qubit state by

projecting one qubit onto |V 〉, onto |H〉 or by tracing it out, respectively.

In Fig. 3.5 the real parts of the density matrices for the measured state with one qubit
projected onto |V 〉 and onto |H〉 are shown as well as for tracing out one qubit.

3.4.4 Vanishing tripartite correlations

σz ⊗ σz ⊗ σz correlation

Correlations are derived from the relative number of outcomes for a σ⊗3
z measurement

for the |W3〉 and the |W3〉 state. In Fig. 3.6 their relative number of events for each
outcome in the σz ⊗ σz ⊗ σz basis is shown for projecting one qubit onto |V 〉 (|W3〉)
and |H〉 (|W3〉) as well as for tracing out one qubit (ρNC,3). The |W3〉 state’s events
V HH (“udd”), HVH (“dud”) and HHV (“ddu”) are expected each with probability 1

3 ,
which is in good agreement with the shown measured relative number of outcomes. The
|W3〉 state in contrast theoretically exhibits the events V V H (“uud”), V HV (“udu”)
and HV V (“duu”) with probability of 1

3 , while all other outcomes are impossible. The
experimental results are shown in the middle plot of Fig. 3.6. Evaluating the correlation
according to Eq. 2.80, the high correlation for the |W3〉 state of T

ρW3,exp

ZZZ = 0.904 ±
0.033 (theoretically T

ρW3,theo

ZZZ = 1) and the anticorrelation of T
ρW3,exp

ZZZ = −0.914± 0.035

(theoretically T
ρW3,theo

ZZZ = −1) for the |W3〉 state, can be calculated3. The prepared state

3TZZZ ≡ T333. This section will use the alphanumerical indexing of the correlation tensor most of
the time. For shortness, the measurement of σz ⊗ σz ⊗ σz will also be denoted as a “measurement of
ZZZ”. See the definition of Pauli matrices in Sec. 2.1 for details.
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Figure 3.6: A measurement in the σ⊗3
z basis is performed. The relative number of

counts for each outcome is shown here, where “u” and “d” denote up and down and are
therefore corresponding for Z measurements to the outcomes V and H. The first two
subfigures show the distribution of outcomes to all possible outcomes of a σz ⊗ σz ⊗ σz
measurement for the states ρW,3 and ρW,3 ≡ ρWbar,3 obtained by projecting one qubit
onto |V 〉 and |H〉, respectively. In the last subfigure, their mixture is shown. Therefore,
the distributions that are not symmetric in respect of exchanging “u” and “d” are
now mixed to a distribution where fuuu ≈ fddd, fuud ≈ fddu, etc. Computing the
correlations according to Eq. 2.80 leads to the given values of the high correlation for
the ρW,3, the high anticorrelation for the ρW,3 state as well as the almost uncorrelated

result for the mixed state.

ρNC,3 has only a very low correlation of T
ρNC,3,exp

ZZZ = −0.004 ± 0.0144. Therefore, the
experimentally measured value for T

ρNC,3,exp

ZZZ vanishes within its error bars.

Full correlations

In the previous section the measurement basis σz ⊗ σz ⊗ σz was chosen to show the
vanishing full correlation TZZZ . This feature is by no means restricted to this basis
setting, but in contrast holds for all appearing full correlations. Because the considered
state is a three qubit state, the correlation tensor has 43 = 64 entries, of which 33 = 27
are full correlations. In Fig. 3.7 and Fig. 3.8 the full correlations of the |W3〉 and |W3〉
states are shown, where the red bars denote the experimental values with the respective
error bars. The grey shaded extensions of the bars correspond to the theoretical values
that one expects for the respective state and particular full correlation. For the |W3〉
state (Fig. 3.7) six full correlations are expected to be 2

3 as can also be seen in Tab.
3.1. These correlations are those with all permutations of XXZ and Y Y Z, i.e. TXXZ =

4Please note that the correlation of the mixed state is not necessarily exactly given by the
sum of the correlations of the states obtained by projecting one qubit. In general, T

ρNC,3,exp

ZZZ =
1
2

(
T
ρW3,exp

ZZZ + T
ρ
W3,exp

ZZZ

)
does not exactly hold for experimentally prepared states. Consider, for in-

stance, that the last qubit of |D(2)
4 〉 shall be traced out to obtain the desired state ρNC,3. If now more

events are measured where this qubit is found to be, e.g., |V 〉 than |H〉, the projection onto |V 〉 comes
with better statistics and, thus, contributes more to the mixed state. Consequently, the mixed state is

not exactly the equal sum of the projections. ρexp
NC,3 ≈

1
2

(
ρexp

W,3 + ρexp

W,3

)
is only an approximation if ρexp

W,3

and ρexp

W,3
are obtained by projections and ρexp

NC,3 by tracing out one qubit.
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Figure 3.7: The full correlations of |W3〉 are depicted for measuring XXX ≡ σx ⊗
σx ⊗ σx, XXY ≡ σx ⊗ σx ⊗ σy, XXZ ≡ σx ⊗ σx ⊗ σz, . . . , ZZY ≡ σz ⊗ σz ⊗ σy,
ZZZ ≡ σz ⊗ σz ⊗ σz. Six full correlations are close to their theoretical prediction of
2
3 while the remaining 20 full correlations are estimated to vanish, which is in good

agreement with the experimental results.

TXZX = TZXX = TY Y Z = TY ZY = TZY Y = 2
3 . The correlation of σ⊗3

z reveals maximal
anticorrelation of TZZZ = −1. The outcomes in all remaining 20 measurement bases are
predicted to be not correlated at all, i.e. Tijk = 0 for all remaining ijk. Fig. 3.8 depicts
the full correlations of the |W3〉 state. Again, 20 full correlations are vanishing. The
remaining seven full correlations are just opposite to those of the |W3〉 state such that
TZZZ = 1 and the six correlations which were said to be 2

3 are expected to be −2
3 now.

Although the experimental values may slightly deviate from the theoretical predictions
in many cases, the general behaviour of the full correlations can also be read from the
experimental measured data.

Finally, in Fig. 3.9 the full correlations of the mixed state ρNC,3 are shown. The error
bars are denoting the interval of one standard deviation of the correlations. Therefore,
68.3% of the correlations are expected to vanish within their error bars, which is in good
agreement with the measured correlations, where 21 of 27 correlations vanish within one
standard deviation, while six correlations do not. By using error bars of 2σ one would
expect 95.4% of the correlations to vanish, i.e. 26 correlations, which again is in good
agreement with the results. Merely the correlation TXXX vanishes only for error bars of
approximately 3σ, but this is still in good accordance with the predictions. Please note
the different scaling of the figures for the |W3〉 (Fig. 3.7) and |W3〉 (Fig. 3.8) states and
the one for the full correlations of Fig. 3.9.
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Figure 3.8: According to Fig. 3.7, the full correlations of |W3〉 are shown. While the
same 20 full correlations are expected to vanish, the 7 correlations that deviate from

zero for the |W3〉 state have correlations with opposite sign for the |W3〉 state.

Independence of measurement settings

It could be shown previously that all full correlations of the ρNC,3 state are vanishing.
For this case, all 33 Pauli directions were considered. One might claim that this feature
does only hold due to the Pauli measurement scheme. If one would use different measure-
ment bases, so one could assert, full correlations unequal to zero may occur. Here, this
proposition will be refuted by using a rotated measurement basis setting. Exemplarily,
the measurement of (sin(θ)σy + cos(θ)σz) ⊗ σz ⊗ σz ≡ rZZ is taken into account with
θ = π/4. For this case of a rotated basis setting, the relative number of counts per pos-
sible outcome is depicted in Fig. 3.10. As in the corresponding figure for measuring σ⊗3

z

(Fig. 3.6) the states |W3〉 and |W3〉 still exhibit a correlation. The correlation for the
projection onto |V 〉, such that the ρexp

W,3 state is obtained, delivers for the rotated mea-

surement setting of (sin(θ)σy + cos(θ)σz)⊗σz ⊗σz the value T
ρW,3,exp

rZZ = −0.610± 0.035,

where the theoretical value is found to be T
ρW,3,theo

rZZ = −
√

1
2 ≈ −0.707. Correspondingly,

the projection onto |H〉 gives T
ρW,3,exp

rZZ = 0.606± 0.033, T
ρW,3,theo

rZZ =
√

1
2 ≈ 0.707, while

measurements for the mixed state, obtained by tracing out one qubit of the measured
four qubit state, are almost completely uncorrelated (T

ρNC,3,exp

rZZ = 0.020± 0.024). Small
deviations between the experimental and the theoretical values can be explained by
contributions of higher order emissions as explained in Sec. 3.4.2.
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Figure 3.9: Mixing the states |W3〉 and |W3〉, the correlations are given by their re-
spective averages. Therefore, theoretically, all full correlations should vanish. Here, the
full correlations of the experimentally prepared state are shown. Most of the correla-
tions vanish within one standard deviation. Please note the different scaling compared

to the plots of Fig. 3.7 and Fig. 3.8
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Figure 3.10: Measurement of
σy+σz

2 ⊗σz⊗σz: while the states obtained by projections
of one qubit show correlations for this choice of measurement, the state given by tracing
out one qubit exhibits uncorrelated results. The relative number of counts for each
outcome is almost symmetric under exchange of “u” and “d” for the mixed state ρNC,3

which leads to a vanishing correlation according to Eq. 2.80. The “r” as the index of
the correlation tensor elements abbreviates the rotated direction, i.e. σr =

σy+σz

2 in
this case.
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Non-full correlations

According to the previously shown relative number of counts for a rotated measurement
and the thereby resulting vanishing correlation, the correlations for measurements with
arbitrary angles are determined. For that purpose, a measurement is performed in
σr ⊗ σz ⊗ σz basis, where σr = sin(θ)σy + cos(θ)σz denotes a rotated basis. In Fig.
3.11 the correlations for different angles are shown. For the considered ρNC,3 state the
full correlation along the corresponding direction is shown (green curve). Furthermore,
non-full correlations are depicted (red and black curves). As already explained in this
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Qubit 3 traced out, ZZZ with Qubit 1: Z→Y

π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π

rZZ

rZ0

r0Z

Figure 3.11: The measurement setting is rotated such that measurements are per-
formed in σr ⊗ σz ⊗ σz basis with σr = sin(θ)σy + cos(θ)σz. The green curve shows
the theoretical prediction for the full correlations, which are all vanishing irrespectively
of the used angle θ. For the black curve the non-full correlations between the first
two qubits are considered, i.e. they correspond to TrZ0, while the red curve shows the
theoretical values for the correlations Tr0Z , where r denotes the rotated basis setting.
Furthermore, the measured values are shown together with their standard deviations.
Although some deviations occur, the measured values for the correlations are in good
agreement with the theoretical values and reflect tellingly the fact that non-full corre-

lations may still persist even if all full correlations vanish.

chapter’s introduction (Sec. 3.2), the fact that full correlations are vanishing does not
allow to infer anything about non-full correlations. Fig. 3.11 shows strikingly that,
although the full correlations vanish, non-full correlations may occur for some basis
settings. These non-full correlations oscillate with the chosen measurement setting,
such that a measurement of for instance ±σz ⊗ σz ⊗ σ0 (θ = 0, θ = π) of the used state
reveals correlation up to ∓1

3 , while the measurement results of the setting σy ⊗ σz ⊗ σ0

(θ = π/2) are uncorrelated.
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3.4.5 Genuine tripartite entanglement

The second demand of the mixed state ρNC,3 beside having vanishing full correlations
is to be genuinely tripartite entangled. Constructing a state with vanishing full corre-
lations, but without this second demand would also lead to such trivial results like the
maximally mixed state, where the only contributing correlation is T111 = 1. Therefore,
it will be shown in this section that the experimental state is also genuinely tripartite
entangled, that is, the state is not only not fully separable, but also not bi-separable.
The ansatz to reveal the genuine tripartite entanglement is the one already introduced in
Sec. 2.4.1 [48]. Thus, one has to find the bi-separable state ρbi−prod with the correlation
tensor T̂ bi−prod which maximises the inner product (T̂, T̂ bi−prod)G for a given metric G
and the correlation tensor T̂ of the state under study. If one can find a metric G such
that the maximum over all states ρbi−prod is less than the value of the inner product
(T̂, T̂ )G, the state is not bi-separable and consequently genuinely entangled. This was
more explicitly discussed in Sec. 3.3.2 for the case of generalised |Wg〉 states as defined
in Eq. 2.51, where genuinely tripartite entangled states of a more general form are stud-
ied with vanishing full correlations. Here, the entanglement of only the state ρNC,3 is
studied.

For this purpose, the metric G is chosen such that only correlations of the state ρNC,3

are involved, i.e. GΠ(xx0) = GΠ(yy0) = GΠ(zz0) = 1 where Π denotes all permutations

of the indices. All other entries of G are chosen to be zero. Consider T̂ to be the
correlation tensor of the theoretical state ρNC,3, then the maximally achieved value for
the separability criterion is [13]

max
T̂bi−prod

(
T̂, T̂ bi−prod

)
G

=
7

3
, (3.14)

which is obtained for the state ρbi−prod = (cos (θ) |PP 〉 − sin (θ) |MM〉) ⊗ |P 〉 with

|P 〉 =
√

1
2 (|0〉+ |1〉) (see Sec. 2.1) and θ = 1

2 tan−1
(

3
4

)
. If the value of (T̂, T̂ exp)G is

greater than the limit value of 7
3 , genuine tripartite entanglement is detected. Using

the correlation tensor T̂ exp of the experimentally obtained state ρexp, one finds with
the given metric G that (T̂, T̂ exp)G = 2.86 ± 0.014, clearly beating the threshold of
7/3 ≈ 2.33. Consequently, the experimentally prepared state is detected to be genuinely
tripartite entangled.

3.5 Conclusion

Naively, one would assume that a genuinely entangled state has non-vanishing full cor-
relations, representing the correlations between the outcomes of all involved parties.
Furthermore, a state where all full correlations cannot be distinguished from zero could
intuitively be assumed to be at least bi-separable. Instead, in this chapter the considered
incoherent summation of the (symmetric) |W3〉 and the |W3〉 state was experimentally
proven to be genuinely tripartite entangled. Moreover, its full correlations were shown to
be that small that they are not significantly distinguishable from zero. To indicate that
not only the choice of Pauli measurement directions causes the full correlations to vanish,
also rotated measurement directions were exemplarily considered. The discrimination
between knowing the exact measurement outcomes of each party and only knowing the
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correlations between all the other measurement outcomes is important for understand-
ing this feature, as it was discussed and illustrated with the help of an example. Finally,
the insights from studying the symmetric |W3〉 and its antistate were used to enquire
the generalised three qubit |Wg

3〉 state. It was shown that only very special choices of
the coefficients α and β lead to a separable state when mixing with its antistate. As
soon as all three states, |001〉, |010〉 and |100〉, contribute to the superposition of |Wg

3〉,
the resulting state is genuinely tripartite entangled.

The question whether this phenomenon is restricted to cases of odd numbers of qubits
is still open. It might be possible to find genuinely entangled states for even number of
qubits n with vanishing n-partite correlations if more than two states are incoherently
summed. Correspondingly, if it is sufficient to incoherently sum two pure states with an
even number of qubits, is not ascertained, yet.



Chapter 4

Bias of Estimators

4.1 Introduction

Quantum state tomography [14] is the process to determine an unknown quantum state
by measuring the outcomes by means of a certain measurement protocol like the Pauli
scheme given in Sec. 2.7. The quantum state tomography is a widely-used method [87–
91]. For that purpose, it is important to control the experimental parameters such that
the measured quantum state is in good agreement with the desired state. Besides this
natural experimental challenge, the finite statistics of measurements may cause further
inconvenience. The measurement process delivers count values cSi for the measurement
outcome i in the used basis setting S. Normalising these counts to the total number
of counts of the respective basis, one obtains relative numbers. These frequencies can
only be approximations with finite precision of probabilities of the underlying quantum
state. Directly using the obtained frequencies as probabilities delivers a matrix ρ̂LIN

which does not necessarily represent a (physical) density matrix, i.e. ρ̂LIN 6≥ 0. Since
physical density matrices are needed to evaluate non-linear functions, methods to ensure
the physicality are applied.

Although strictly speaking not being correct, matrices ρ with ρ 6≥ 0 will be called
“states” throughout this chapter to avoid lengthy phrases. Also, the quotation marks
will often be skipped for those unphysical states to improve the readability while the
clarification about the physicality is made where relevant. In this chapter, different
ways are discussed how to estimate a quantum state or at least particular quantities
of interest of the underlying quantum state. This analysis is based on a large amount
of states such that statistical distributions can be considered. Thus, unless otherwise
noted, the used quantum states are obtained by numerical simulations.

One requirement of all quantum state reconstruction methods is that the reconstructed
state is close to the underlying quantum state. Assuming that the state prepared in
the laboratory may give a fidelity of F (ρexp, ρtheo) = 0.8 with respect to the theoretical
state ρtheo, it is a further, natural and reasonable demand that the reconstructed state
gives F (ρreconstructed, ρtheo) = 0.8 on average as well. Due to the finite statistics of the
measurement, some deviations may occur, but for successful state reconstruction the
theoretical value should be at least within the error bars of the reconstructed quantum
state. This analysis will show that in general this is not the case.

42
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4.2 State reconstruction

Here, an overview of different strategies to obtain the density matrices of quantum
states from measured data is given. In the first part the most naive and straightforward
ansatz is presented, where the obtained frequencies are interpreted to be probabilities.
Its drawback, i.e. the possibility to give unphysical density matrices, will be discussed.
This directly motivates the search for various methods that ensure physical results. To
conclude this section, methods of practical use to compute error bars will be shown.

4.2.1 Using frequencies as probabilities

According to Sec. 2.7, one measurement strategy to determine an unknown n qubit state
is to measure all 3n tensor products of the three Pauli matrices σx, σy and σz. In each
measurement setting, 2n different outcomes are possible. The positive-operator-valued-
measure (POVM) [92] elements for a given setting S are denoted by MS

i , the absolute
number of counts of outcome i in setting S is labelled by cSi and their respective sum
in a given basis by NS . Therefore, the frequency of outcome i when measuring setting
S is given by fSi = cSi /NS . According to Born’s rule [93] the probability of outcome i
in basis S for a quantum state ρ0 is given by Pρ0(i|S) = tr(ρ0M

S
i ) where the frequency

fSi is an approximation to the probability Pρ0(i|S).
The most straight-forward way to obtain a density matrix by the count data is to find
the state ρ̂LIN that fulfils the condition fSi = Pρ̂LIN

(i|S) for all outcomes i in all settings
S. This can be done directly for a complete set of 4n − 1 measurement results [15].
For an overcomplete measurement protocol as described in Sec. 2.7, the 6n obtained
measurement results over-determine the set of equations. The state in best agreement
with the overcomplete set of measurement results is determined either by an explicit
fit, i.e. ρ̂LIN = arg minρ(f

S
i − Pρ(i|S))2 [94], or one uses the reconstruction scheme as

defined in Eq. 2.77 [28]. Unfortunately, this does not ensure ρ̂LIN ≥ 0. Although it
is possible to use ρ̂LIN to estimate for example the fidelity of the reconstructed state
with respect to a pure target state (see Sec. 2.4.3), some non-linear measures like the
entropy (see Sec. 2.4.6) or the negativity of a partial transpose (see Sec. 2.4.1) of a
state cannot be evaluated meaningfully. The possibly occurring negative eigenvalues λi
of ρ̂LIN could for instance cause the entropy S(ρ) = −

∑2n

i=1 λi ln(λi) to be an imaginary
number, which is away from any physical interpretation.
Therefore, different schemes to ensure the physicality of the reconstructed states are
applied.

4.2.2 State reconstruction with ensured physicality

The general approach of quantum state reconstruction methods that guarantee to deliver
a physical density operator is to use an optimisation with the constraint ρ ≥ 0. The task
is to find the density operator that is in best agreement with the measured data. Various
definitions of the meaning of “best” finally result in different methods. Mathematically
speaking one defines this property by

ρ̂ = arg max
ρ≥0

T (ρ|f) (4.1)
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with the target function T which quantifies the agreement of a density operator ρ with
the observed set of given frequency data f .

Least squares

An intuitive way to describe the agreement of the observed frequencies with the proba-
bilities of a quantum state is given by a least-squares (LS) ansatz. For general weights
w(i|S) the target function can be expressed as

TLS = −
∑
i,S

w(i|S)
(
fSi − Pρ0(i|S)

)2
, (4.2)

i.e. for the case of fSi = Pρ0(i|S) the target function vanishes while for increasing
deviations TLS decreases.
Different choices for the used weights w(i|S) are possible. For the most prominent case
of free least-squares (FLS) [15] the weights are the inverse probabilities1 such that

TFLS = −
∑
i,S

1

Pρ0(i|S)

(
fSi − Pρ0(i|S)

)2
. (4.4)

Consequently, deviations for low probabilities have greater weights than those for larger
Pρ0(i|S).

Maximum likelihood

Another commonly used [87, 88] target function to obtain a quantum state with ρ ≥ 0
is given by the maximum likelihood (ML) estimation [16]. With this approach, one is
looking for the state ρ whose probability to deliver the given frequency data f is largest.
As a result, the likelihood of the desired state ρ is largest. Because the probability for
a measurement outcome i when measuring the operator MS

i of the candidate state ρ is
given by Pρ0(i|S) = tr(ρ0M

S
i ), the likelihood function of observing a series of N events

i1, . . . , iN in bases S1, . . . , SN is given by [95]

L̃(ρ) = Pρ(i1|S1)Pρ(i2|S2) · · ·Pρ(iN |SN ) =
N∏
j=1

Pρ(ij |Sj). (4.5)

Ordering and regrouping the events according to their outcome, the function now reads
as [96]

L̃(ρ) =
∏
i,S

Pρ(i|S)c
S
i . (4.6)

1If the number of counts NS per basis setting S are not equal for all settings, this term should be
slightly modified. According to [15]

TFLS = −
∑
i,S

1

NSPρ0(i|S)

(
cSi −NSPρ0(i|S)

)2

= −
∑
i,S

NS
Pρ0(i|S)

(
fSi − Pρ0(i|S)

)2

. (4.3)

For equal number of measurement repetitions for all settings, the factor NS does not change the weight-
ing.
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Because of the monotony of the logarithm it is also possible - and easier - to maximise
instead of Eq. 4.6 its logarithm, the so called log-likelihood :

Lc(ρ) = log(L̃(ρ)) =
∑
i,S

cSi log (Pρ(i|S)) . (4.7)

Renormalising this function by the total number of eventsNS per respective basis setting,
the (log-)likelihood becomes now Lf (ρ) =

∑
i,S f

S
i log(Pρ(i|S)). Therefore, this leads to

the target function

Tml =
∑
i,S

fSi log(Pρ0(i|S)), (4.8)

which again is optimised such that according to Eq. 4.1 ρ ≥ 0 holds. Please note that
Eq. 4.8 holds only if all the numbers of counts per basis setting NS are equal for each
setting S. Because this does not apply for measured states in most cases, those states
may be reconstructed by using Eq. 4.7 instead.

There are also modifications of the maximum likelihood approach used based on sta-
tistical considerations conceivable2. One exemplary variation of ML is the hedged max-
imum likelihood (HML) estimation [18]. Additionally to the used likelihood function
LML(ρ) = P (f |ρ), a hedging function will be used such that [18]

LHML = LMLh(ρ) = LML det(ρ)β. (4.9)

Therefore, the target function one has to maximise over reads for the HML case with
β > 0 [21] and with the same statistics NS for all settings as

THML =
∑
i,S

fSi log(Pρ0(i|S)) + β log(det(ρ0)). (4.10)

As a direct consequence, the hedged maximum likelihood approach favours states with
larger determinant. Since the density matrix expressed in its eigenvalues {λi}i and
its eigenvectors {|ψi〉}i reads as ρ =

∑2n

i=1 λi|ψi〉〈ψi|, the determinant becomes det(ρ) =∏2n

i=1 λi. Thus, rank-deficit states, where λi = 0 holds for at least one i, have a vanishing
determinant, lead to an infinite value of the target function. Therefore, these rank-deficit
states are forbidden and will not be reconstructed as such. The hedged maximum
likelihood approach hence prevents states with low rank, but in return ensures better
error estimation for parametric bootstrapping [18, 21], see also Sec. 4.2.4.

The state estimates, i.e. for example the reconstructed state by means of the maximum
likelihood target function ρ̂ML = arg maxρ≥0 Tml(ρ|f) and ρ̂FL = arg maxρ≥0 Tfls(ρ|f)
for the free least-squares ansatz, respectively, can be used to evaluate functions of the
density operators directly. While the entropy S(ρ̂LIN) of the linearly reconstructed state
is a quantity without physical interpretation for ρ̂LIN 6≥ 0, the entropy S(ρ̂ML) or S(ρ̂FL)
of the reconstructed state corresponds to the desired quantity. All kinds of measures can
be obtained with ρ̂ML and ρ̂FLS while the quality of the least-squares and the maximum
likelihood estimates will be analysed later on.

2For a motivation, consider tossing a coin. If all outcomes are, e.g., head, the maximum likelihood
ansatz gives a probability of unity that the outcome is head and zero for tail. In contrast, by a finite
number of tosses the probability for tail cannot be said to be zero since a small, but finite probability
is still in accordance with the measurement outcomes. Variations of maximum likelihood take this into
account and prefer more mixed states even if their likelihood according to Eq. 4.7 would be slightly less.
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4.2.3 Convex optimisation

To reconstruct the quantum state via fitting, Eq. 4.1 has to be solved. Irrespective
of the used target function, i.e. whether one prefers the free least-squares (Eq. 4.4),
another variant of the least-squares (Eq. 4.2), the maximum likelihood approach (Eq.
4.8) or the hedged maximum likelihood (Eq. 4.10), the task to solve is by the additional
condition of ρ ≥ 0 a constraint problem [97]. Thus, the expression to optimise can be
changed into [21]

ρ̂ = arg max
ρ

(T (ρ|f) + t log(det(ρ))), (4.11)

such that the barrier term expression Tbarrier = t log(det(ρ)) ensures the physicality of ρ
explicitly, but therefore the optimisation itself runs over all ρ. At boundary when leav-
ing the space of physical density operators ρ ≥ 0, at least one eigenvalue vanishes [21].
Therefore, the determinant vanishes when approaching the border of the space of physi-
cal states and thus, the logarithm diverges according to limρ→det(ρ)=0 log(det(ρ)) = −∞.
Consequently, the step of quitting the physical subspace is punished. Note that in gen-
eral unphysical states are not forbidden with this barrier term themselves, but only the
step of reaching them. Thus, it is crucial to start with a physical state. In practice, a
good starting state for the optimisation is the maximally mixed state ρWN.

A helpful parametrisation of ρ is given by

ρ(x) =
1

2n

4n∑
i=1

xiSi (4.12)

with x1 = 1. x1 is kept fix to ensure tr(ρ(x)) = 1. Since this parametrisation is fully
equivalent to Eq. 2.18, the xi correspond to the elements of the correlation tensor, while
Si are the basis elements with Si = σi1 ⊗ σi2 ⊗ · · · ⊗ σin , where ij ∈ {0, 1, 2, 3} indexes
the Pauli matrix σij of the jth qubit.
Instead of maximising Eq. 4.11, the problem is turned into a minimisation with [21]

ρ̂ = arg min
ρ

(−T (ρ|f)︸ ︷︷ ︸
T̃ (ρ|f)

−t log(det(ρ))) (4.13)

where T̃ (ρ|f) = −T (ρ|f) and T̃barrier = −Tbarrier, i.e. the tilde denotes the inverted
signature. Showing the convexity of the problem can be done by inquiring the second
derivative of the optimisation given in Eq. 4.13. The barrier term’s first and second
derivatives read as [97]

∂T̃barrier

∂xi
= − tr

(
ρ(x)−1Si

)
, (4.14)

∂2T̃barrier

∂xi∂xj
= tr

(
ρ(x)−1Siρ(x)−1Sj

)
. (4.15)

Then for the maximum likelihood target function T̃ML, one obtains [21]

∂T̃ML

∂xi
= −

∑
k

fk
tr(ρ(x)Mk)

tr(SiMk), (4.16)

∂2T̃ML

∂xi∂xj
=

∑
k

fk
tr(ρ(x)Mk)2

tr(SiMk) tr(SjMk), (4.17)
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while the derivatives for the free least-squares approach read as

∂T̃FLS

∂xi
=

∑
k

1− f2
k

tr(ρ(x)Mk)2
tr(SiMk), (4.18)

∂2T̃FLS

∂xi∂xj
=

∑
k

2
f2
k

tr(ρ(x)Mk)3
tr(SiMk) tr(SjMk). (4.19)

Since all second derivatives are non-negative, the Hessian matrix fulfils ∇2(T̃ (ρ|f) −
t log(det(ρ))) > 0 for T̃ = T̃ML as well as for T̃ = T̃FLS. Hence, the maximum likelihood
and the free least-squares approaches are convex problems, i.e. there is only a single local
minimum, which therefore coincides with the global minimum. Thus, a valid criterion
for the algorithm to converge is the p = 2 norm of the gradient of T̃ (ρ|f)− t log(det(ρ)).
The smaller this absolute value is, the closer ρ is to the desired minimum [95].

A valid way to monitor the convergence behaviour of the algorithm’s implementation is
by applying it on simulated states. Since in this case the desired ρ is known and chosen
to be a positive semi-definite matrix, the output state ρ̂ML and ρ̂FLS, respectively, have
to be in good agreement with the input state ρtheo. A verification of this behaviour is
given in Fig. 4.1, where the trace distance of the obtained state ρ̂ML with respect to the
theoretical state is shown.
The barrier term T̃barrier = −t log(det(ρ)) equates to the additional expression of the
hedged maximum likelihood approach (Eq. 4.10) for appropriate t and β. Similar as
the hedged maximum likelihood target function, the barrier term punishes states with
high purity. The determinant of the density matrix can be expressed as the product
of its eigenvalues, i.e. det(ρ) =

∏
i λi. Therefore, if λi = 0 holds for at least one λi,

the determinant vanishes and the logarithm diverges. Thus, it is crucial to gradually
decrease the value of t and hence the influence of the barrier term. While in the first
iteration t = 1 the range of the influence of the barrier term is wide, its punishment
becomes more peaked for decreasing t. After at most 10 iterations, t is decreased ac-
cording to3 t → t/10. If the algorithm converged earlier, i.e. the gradient undershoots
some threshold, t is decreased before 10 iterations.
For more details concerning the implementation of the convex optimisation and espe-
cially ideas for modifications, please consult the appendix B.

4.2.4 Bootstrapping

All described methods to reconstruct a physical density operator by means of measured
frequency data are point estimates only. Therefore, each application of a reconstruc-
tion scheme results in a single density matrix without any statistical information. To
overcome this, a method called bootstrapping is established [22, 98]. By means of Monte-
Carlo simulations [99] the observed data sets are used to generate new sets of frequency
data. The fluctuations of the new samples are then used to derive the error bars of
the estimate. Depending on the concrete way of Monte-Carlo sampling, two kinds of
bootstrapping are distinguished. After presenting the two commonly used methods of
bootstrapping, later the quality of this technique will be discussed.

3Consider for example a state with λ1 = · · · = λ15 = 10−5 and λ16 ≈ 1. The determinant is
approximately det(ρ) ≈ (10−5)15 = 10−75. Therefore, log(det(ρ)) ≈ −75/ log10(e). For t = 1, this term
is of relevance since the likelihood is of the same order of magnitude. Later on, t→ 10−10 and thus, the
punishment by the barrier term is negligible.
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Figure 4.1: The logarithm of the trace distance (blue) between the physical input

state ρtheo = |D(2)
4 〉〈D

(2)
4 | and the optimised state ρ̂

(i)
ML is shown for using the maximum

likelihood estimator during the iterations of the algorithm. Each plateau of the trace
distance plot corresponds to a certain value of the barrier term’s coefficient t. The
2-norm of the gradient of the optimisation problem is also shown (red). At each step
when the gradient undershoots a given threshold the decrease of the barrier term’s
coefficient t is invoked. This causes a change in the optimisation function, whereby
the gradient suddenly increases again. Thus, this has to be done until the influence of
the barrier term is steep, but only of short range. Here, a maximum likelihood fit was

applied. Similar results were obtained for FLS.

Parametric bootstrapping

One way to obtain a kind of error bars is by applying the so called parametric boot-
strapping [98]. First of all, the experimental data fobs is used to estimate the density
operator ρ̂fit with the help of a fitting method like FLS or ML. Afterwards, the probabil-
ities for each measurement outcome of the reconstructed state are calculated according
to Pρ̂fit

(i|S) = tr(ρ̂fitM
S
i ). With these probabilities, new samples of frequency data are

simulated according to a multinomial probability distribution. Afterwards, the sets of
frequency data are used to reconstruct a set of density matrices. Finally, the quantity
of interest can be equipped with error bars by determining the standard deviation of
the respective quantity on all reconstructed density operators of all sets of simulated
frequency data.
The method of simulating a quantum state based on a theoretical quantum state will
be explained further in Sec. 4.4.1.
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Non-Parametric bootstrapping

Besides the parametric bootstrapping, it is also possible to determine error bars of
respective quantities by using the non-parametric bootstrapping method [98]. While
the general approach equals the parametric bootstrapping, the way of generating the
new samples of frequencies differs in this case. In contrast to using the probabilities
of the reconstructed state like in the parametric case, the observed frequencies fSi are
interpreted as probabilities and therefore directly used to generate new samples. Thus,
no intermediate fitting takes place.

4.3 A definition of bias

An estimator is called unbiased if it delivers the true answer on average, i.e. its estima-
tions are not biased towards any direction. Applying this general rule to quantum state
estimation, the mean of the resulting ρ̂ coincides with the underlying quantum state ρ0,
i.e. [100]

Eρ0(ρ̂) =
∑
f

Pρ0(f)ρ̂(f) = ρ0, (4.20)

where f denotes in this case a whole set of frequency data, i.e. f ≡ {fSi }i,S . Pρ0(f)
denotes the probability that the underlying state ρ0 provides the frequencies f . With
this definition, the difference of the mean of an estimator of ρ0 and ρ0 itself is called
bias [100]. If a samples of estimates is analysed , not only the bias of the estimator
accounts, but also statistical fluctuations of the sample. The mean squared error (MSE)
can be used to further investigate the different contributions to the scatter. For example,
in case of the fidelity estimation, the mean squared error reads [100]

MSE(F) = Eρ0 [(F̂ − F0)2] = Vρ0(F̂ ) + [Eρ0(F̂ )− F0]2. (4.21)

Thus, the mean squared error decomposes into two fundamentally different contribu-
tions, i.e. into the statistical fluctuations of the sample Vρ0(F̂ ) and the bias, that is the
deviation of the sample’s mean Eρ0(F̂ ) and the estimator’s true mean F0. Please note
that the observation of a bias is not a very special phenomenon of quantum state estima-
tion, rather a well known effect in statistics [100]. The probably most famous example
of a bias is given by a Gaussian distribution whose variance has to be determined [101].
Assume to have obtained N samples (Xi)i from the Gaussian distribution N (µ, σ2) with
mean µ and variance σ2. The sample mean may be determined as X = 1

N

∑
iXi which

directly delivers the mean µ. An intuitive estimator to obtain the sample’s variance
could be ŝ2 = 1

N

∑
i(Xi − X)2, whose expectation value does not coincide with the
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underlying variance σ2 since [102]

E
(
ŝ2
)

=
1

N
E

(
N∑
i=1

(Xi − µ+ µ−X)2

)

=
1

N
E

(
N∑
i=1

(Xi − µ)2 − 2
N∑
i=1

(Xi − µ)(X − µ) +N(X − µ)2

)

=
1

N
E

(
N∑
i=1

(Xi − µ)2 −N(X − µ)2

)

= V (X)− V
(
X
)

=
N − 1

N
σ2 < σ2

(4.22)

Instead, the usually preferred estimator for the variance is obtained by correcting it
according to σ̂2 = ŝ2 N

N−1 , which gives an unbiased estimator for the variance. The bias

vanishes for infinite sample size N since limN→∞
N
N−1 = 1.

Biased estimators can lead to wrong results when not used with caution. But since
the bias can in some cases be small compared to the statistical fluctuations and unbi-
ased estimators may be hard to find, biased estimators can be employed when being
aware of the problem. Here, the order of magnitude of the bias and statistical scatter
will be studied, whereby the validity of the used quantum state estimators ML and FLS
will be questioned.

4.3.1 Impossibility of general and unbiased estimator

By a heuristic proof, it can be shown that no quantum state reconstruction method can
be designed such that on one hand all delivered quantum states are positive and on the
other hand the reconstruction method is unbiased [23]. An illustrative analogue for this
proposition is shown in Fig. 4.2. Due to the constraint of ρ ≥ 0, the tail of a probability

ρ>0 ρ>0 ρ>0

Figure 4.2: A physical state ρ0 is prepared in an experimental setup (or simulated
numerically). ρ0 is shown in the left figure sketching the state space. The yellow marked
state lies within the space of physical states ρ ≥ 0 (green). When this state is used to
sample with finite statistics from it, the linearly reconstructed states lie around ρ0 as
the blue shaded area suggests in the middle figure. The right part of the blue circle (blue
and white stripes) does not lie within the physical space of states, consequently ρ ≥ 0
does not hold for these states. A reconstruction method that ensures the physicality of
the obtained state causes these states with ρ 6≥ 0 to be shifted into the area of ρ ≥ 0.
Their mean is consequently shifted. Therefore, the mean of the reconstruction using a

fit ρfit (light green mark) is shifted compared to ρ0 (yellow mark).
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density distribution is cut such that the mean of the remaining sample of states is shifted
relative to the initial distribution. Therefore, the restriction to ρ ≥ 0 then necessarily
leads to a bias.

Fully equivalent to this illustrative, but very heuristic argumentation, the non-existence
of a general and unbiased quantum state estimator can be shown according to [23].
Consider a quantum state estimator ρ̂ that ensures the physicality constraint of ρ̂ ≥ 0.
It will be shown by a proof by contradiction that no general quantum state estimator
can be found that gives physical (i.e. ρ̂ ≥ 0) and unbiased results. The unbiasedness
can be express by the condition

Eρ0(ρ̂) =
∑
f

Pρ0,NS (f)ρ̂(f) = ρ0. (4.23)

Pρ0,NS (f) denotes the probability that a theoretical quantum state ρ0 delivers the set of
frequency data f when measuring ρ0 with NS measurement repetitions per setting. For
a finite number of measurement repetitions, Pρ0,NS (f) > 0 holds for more than one4 set
of frequency data f .
Now assume that an unbiased estimator ρ̂ with ρ̂ ≥ 0 according to Eq. 4.23 would exist.
The incoherent sum of reconstructed states ρ̂(f) based on the frequency data f has to
coincide with the underlying quantum state ρ0. For a pure state ρ0 = |ψ0〉〈ψ0|, this is
only possible if the quantum state estimator delivers the underlying state |ψ0〉 for all
sets of frequency data with Pρ0,NS (f) > 0, i.e. ρ̂ = |ψ0〉〈ψ0|. Obviously, this estimator is
not general. Particularly, note that for each set of frequency data f , a nondenumerable
amount of states correspond to the same data set5. Thus, even if the state ρ0 is re-
ported unbiasedly by the estimator ρ̂, another state ρ1 cannot be determined unbiasedly
if both, ρ0 and ρ1, correspond to the same set of frequency data when measured with
NS measurement repetitions.
Consequently, a quantum state estimator cannot be unbiased, general and always deliv-
ering a physical state at the same time when based on data sets with finite statistics.

4.3.2 Problems arising for non-linear functions

Furthermore, please be aware that even if the state estimator is unbiased this does not
necessarily lead to an unbiased estimation of non-linear functions of the state. Assume
that the condition of unbiasedness would hold, i.e. Eρ0(ρ̂) =

∑
f Pρ0(f)ρ̂(f) = ρ0.

Now consider a function Q ≡ Q(ρ) defined on the space of states. If the expecta-
tion value of this quantity shall be compared with its theoretical prediction, Q(ρ0) =

Q
(∑

f Pρ0(f)ρ̂(f)
)

directly follows for the theoretical value. If Q is a linear function,

4Only for infinite statistics (NS →∞), Pρ0,NS (f) = δ(f − f0), where f0 denotes the set of frequency
data corresponding to ρ0.

5Consider the simple one qubit state |ψ0〉 =
√

1√
2
|H〉+

√
1− 1√

2
|V 〉. For example, the real probability

P|ψ0〉(0|Z) = tr
(
MZ

0 |ψ0〉〈ψ0|
)

= tr
(

1
2
(σ0 + σz)|ψ0〉〈ψ0|

)
=
√

1
2

can be approximated by the rational

frequency number fZ0 , only. For infinite statistics the frequency fZ0 converges to P|ψ0〉(0|Z), i.e. fZ0 →√
1
2
.



Chapter IV. Bias of Estimators 52

this can be simplified such that

Q(ρ0) = Q

∑
f

Pρ0(f)ρ̂(f)

 =
∑
f

Pρ0(f)Q(ρ̂(f)) = Eρ0(Q(ρ̂)) (4.24)

holds. Therefore, a linear function together with an unbiased quantum state estimator
leads to unbiased results of this function. Instead, if the considered function Q is non-
linear, this simplification cannot be executed. Consequently, evaluating a non-linear
function on a set of unbiased quantum states does not necessarily lead to an unbiased
distribution of the function values. Additionally, also if the bias of the quantum state
estimator is small, non-linear functions may give strongly biased results.

4.4 Examination of state reconstruction techniques

The biasedness of quantum state estimators will be analysed by using simulated states.
Thus, a theoretical state, for which the probabilities for each measurement outcome are
known, is used to simulate sets of frequency data according to their distributions for
a finite number of measurement repetitions. As an exemplary state, the Greenberger-
Horne-Zeilinger |GHZ〉 state (see Sec. 2.5.2) encoded with 4 qubits will be considered:
|GHZ〉 = 1√

2
(|0000〉 + |1111〉). The state will be admixed with white noise according

to ρ0 = p|GHZ〉〈GHZ| + (1 − p)ρWN. This state is chosen as it first avoids problems
associated with pure states and as it This simple model allows to obtain values for the
fidelity that are comparable to those of experimental setups. Since a fidelity value of F0 =
F (ρ0, |GHZ〉) = 0.8 is in the range of typically experimentally achievable fidelities, p is
chosen to accomplish this, i.e. setting p = (0.8−F (|GHZ〉, ρWN))/(1−F (|GHZ〉, ρWN)) =
0.786 results in a theoretical fidelity value of 80%. Now, the probabilities of ρ0 are used
to sample with a multinomial distribution from as will be explained in Sec. 4.4.1. One
would intuitively expect that the fidelity of the quantum state after reconstruction with
respect to the |GHZ〉 state is around 0.8. Even if a slight deviation might occur, at least
for repeatedly doing this, the expected distribution of the fidelities of states reconstructed
with FLS and ML, respectively, would fluctuate around the theoretical value of 0.8.

4.4.1 Simulation method

The fundament of the analysis are numerical simulations. For that purpose, a theoretical
state ρ0 is used. For a given measurement protocol (see Sec. 2.7) the probabilities for all
projective measurements are calculated, i.e. one calculates the probabilities P (i|S) =
tr(ρ0M

S
i ) for all outcomes i of all settings S with MS

i as, for example, given in Eq.
2.78. For each setting S, these probabilities are used to sample NS times with a given
probability distribution. Here, a multinomial distribution for the number of counts cSi
in each basis setting S is employed according to

P
(
cS0 = x0, c

S
1 = x1, . . . , c

S
2n = x2n

)
=

NS !

x0! · x1! · · ·x2n !
P (0|S)x0 ·P (1|S)x1 · · ·P (2n|S)x2n

(4.25)
with the number of measurement repetitions NS . The obtained data is a set of 6n

numbers of counts cSi for the presented overcomplete protocol. Finally, the density
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matrices are reconstructed by means of the presented methods in Sec. 4.2 for each set
of counts.

4.4.2 Fidelity of reconstructed Greenberger-Horne-Zeilinger states

With the presented method of simulation the maximum likelihood and the free least-
squares reconstructions are compared with the direct linear inversion. For the above
mentioned state ρ0, i.e. a Greenberger-Horne-Zeilinger state with admixed white noise,
one expects a fidelity with respect to the pure |GHZ〉 state of F0 = 0.8. The simulation
is based on NS = 100 measurement repetitions per basis setting S. 500 sets of frequency
data are simulated that are reconstructed with the aid of the linear inversion, the max-
imum likelihood reconstruction and the free least-squares method.
For evaluating the fidelity from the typically unphysical states ρ̂LIN determined by means
of the linear reconstruction one obtains indeed FLIN = 0.800 ± 0.012. However, if the
states are reconstructed with maximum likelihood and free least-squares, the resulting
fidelities are not distributed around 0.8 at all. Maximum likelihood reconstruction gives
a significant bias and FML = 0.788±0.010 while reconstructing the state by means of the
free least-squares method leads to even lower fidelities (FFLS = 0.749±0.010). Although
the distributions overlap, both fitting methods reduce in almost all cases the fidelity, as
can be seen from the lower part of Fig. 4.3. Interestingly, while the width of ML is
similar to the width of the fidelity distribution of FLS, the distribution of the difference
between both fits is narrower, which is depicted in the FLS-ML distribution. The narrow
distribution of FLS-ML indicates a stronger correlation between the reported states via
maximum likelihood and free least-squares than between the outcomes of LIN and ML
on one hand and LIN and FLS on the other hand.

As one would intuitively suppose, the bias of the reconstruction methods depends on
the statistics, i.e. the number of measurement repetitions NS per basis setting S. This
bias is neither special for the GHZ state nor for estimating the fidelity. Instead, in Sec.
4.4.3 an overview of the deviations for different states and statistics NS will be given.
Firstly, for NS = 100 state parameters of the Greenberger-Horne-Zeilinger state will be
varied. Afterwards, the dependency of the bias of different states on the statistics NS

will be investigated.

4.4.3 Different state parameters

Although the deviations between the reconstructed and the theoretical state were shown
for the 4 qubit Greenberger-Horne-Zeilinger (GHZ) state with 21.3% admixed white
noise, this effect is not restricted to this case. In this section different parameters of the
initial state are varied to further study the bias of the state estimator.

Fidelity bias for different GHZ states

Here, different types of Greenberger-Horne-Zeilinger states are considered by either vary-
ing the number of qubits or the amount of admixed white noise. The theoretical state
belongs to the class of states ρ0 = p|GHZn〉〈GHZn| + (1 − p)ρWNn , where p is chosen
such that the fidelity between the theoretical state ρ0 and the target state |GHZn〉 fulfils
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Figure 4.3: 500 states are sampled with a multinomially distributed number of counts
per outcome based on the simulated frequencies (see Sec. 4.4.1) of the theoretical state
ρ0 which is composed of a four qubit GHZ state with admixed white noise. NS = 100
measurements are performed per setting S. While the average fidelity using linear in-
version (LIN) is close to the true value of 0.8, which is depicted by the dashed line,
the mean values for free least-squares (FLS) and maximum likelihood (ML) state re-
construction deviate from it. The lower part of the figure shows the distribution of
the deviations for each single state for the different reconstruction methods such as
ML-LIN which corresponds to the difference of the fidelity of the state reconstruction

using maximum likelihood and the linear estimated fidelity.

F0 = F (ρ0, |GHZn〉) = 0.8. While for increasing number of qubits n the fidelity decreases
only slightly for the maximum likelihood reconstructed states, a stronger decrease for
FLS can be seen, cf. Fig. 4.4. The standard deviation of the fidelity of the studied
500 states decreases for increasing numbers of qubits n, although the total amount of
repetitions per basis setting is always set to NS = 100. This effect can be explained by
the fact that the fidelity is composed of a larger quantity of different numbers of counts
cSi for increasing number of qubits and basis settings. This reduces the statistical error.

Additionally, one is also interested in the dependency of the reported fidelity on the
purity of the inital state. Therefore, the amount of admixed white noise will be varied
such that target fidelities F0 between 1/16 (only white noise without any amount of a
GHZ state) and 0.9 are used to generate again 500 states for each ρ0. Recall from the
introduction in Sec. 4.4 that the parameter p is given by

p =
F0 − F (|GHZ〉, ρWN)

1− F (|GHZ〉, ρWN)
. (4.26)
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Figure 4.4: The fidelity dependency on the number of qubits (left subfigure) and on
the target fidelity (right subfigure) is shown. The right subfigure depicts the fidelity
bias F (ρestimation, |GHZ〉)−F (ρ0, |GHZ〉) for different initial fidelities F0. The analysis
is based on 500 simulated states (see Sec. 4.4.1) and NS = 100 measurement repetitions

per basis setting S.

While for low target fidelities the bias almost vanishes, its influence is largest for the
most interesting regime of F0 ∈ [0.5; 0.9]. The largest deviation between F0 and FFLS

is found for higher target fidelities than in the case of using the maximum likelihood
method. For all chosen F0, FLS gives more biased fidelities than ML, whose results are
shifted from F0, anyway.

Fidelity bias for different classes of states

In Fig. 4.5 different classes of 4 qubit states are investigated with respect to the fidelity
between the theoretical state and the state obtained with either one of the fit methods
ML and FLS or with direct evaluation of the linearly obtained state. Therefore, the
fidelity which again is expected to be F0 = 0.8 is shown for a GHZ state (Sec. 2.5.2),
the Smolin state (Sec. 2.5.7), a Dicke state (Sec. 2.5.3), a W state (Sec. 2.5.4), a
Cluster state (Sec. 2.5.6) and a separable state (∝ (|H〉+ |P 〉)⊗4) for a varying number
of simulated measurement repetitions NS per setting S. The mentioned effect is not
negligible for any of the states in the regime of a typical number of measurement rep-
etitions while for high values of NS this effect becomes almost indiscernible. The state
reconstruction with FLS gives in all cases worse results than using ML which still suffers
from a significant bias. In contrast, the linearly evaluated fidelity is a good estimate
since it fluctuates around the true value of F0 = 0.8 for all values of NS . Please note
that the fidelity can only be evaluated linearly if it is evaluated with respect to a pure
state. Because the measured (in this case simulated) state is in general a mixed state, a
linear evaluation can only be accomplished if the theoretical state is pure. Therefore, a
linear evaluation of the fidelity is not possible, e.g., for the Smolin state as it is a mixed
state [73].

4.4.4 Error calculation

Because quantum state estimators like the maximum likelihood or free least-squares
methods are point-estimators, no information about the statistical behaviour can be
inferred from a single estimation. Therefore, an often used method to learn about the
standard deviation of quantities of interest is to use bootstrapping as explained in Sec.
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Figure 4.5: The dependency of the fidelity on the number of measurement repetitions
NS per basis setting for various states is shown. The decrease of the fidelity with respect
to the theoretical state cannot only be seen for GHZ states, but is also observable for all

studied states like the Smolin state, the Dicke state |D(2)
4 〉, the |W〉 state, the Cluster

state and a separable state, each considered with n = 4 qubits. Estimating the fidelity
of reconstructed states via a fitting method underestimates the true value of F0 = 0.8.
In the case of the Smolin state no linearly estimated fidelity could be obtained since if
both, the studied state and the reference state, are mixed, the fidelity is not a linear

function, cf. Eq. 2.33.

4.2.4. For the case of a Greenberger-Horne-Zeilinger state with admixed white noise
(F0 = F (ρ0, |GHZ〉) = 0.8) bootstrapping will be used to evaluate the quality of the
obtained error bars. In Fig. 4.6 bootstrapping is applied for all four combinations of
maximum likelihood and free least-squares estimation as well as for parametric and non-
parametric bootstrapping. The distributions are based on the same 500 simulated states
as in Fig. 4.3. For each obtained estimate 100 new frequency data are generated from
the reconstructed state (parametric bootstrapping) and from the original frequency data
directly (non-parametric bootstrapping). These new generated 100 sets of frequency
data for each state are used to compute their respective mean and standard deviation.
In Fig. 4.6 the histogram shows the distribution of the mean values of the bootstrapping
results as well as their standard deviation (grey shaded area).

In the most drastic case, as shown in the lower left part of Fig. 4.3, the determined
value deviates significantly from the theoretical value. Since the fidelity is reduced
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Figure 4.6: Applying bootstrapping is a standard method for determining the stan-
dard deviation of quantities of interest. Here, bootstrapping is used to find the standard
deviation of the fidelity for the 4 qubit GHZ state with admixed white noise. The his-
tograms denoted by “before BS” represent the fidelity estimates for the states obtained
by ML and FLS fitting methods, respectively. In the case of parametric bootstrapping,
each of these 500 states are used to generate 100 new sets of frequency data, which are
again used for the fitting method. The 500 means and standard deviations, each taken
over the set of these 100 newly sampled data, are shown in the histogram labelled with
“after BS” as the continuous blue lines and the grey shaded areas, respectively. In the
non-parametric case, the seed for the bootstrapping corresponds to the linear inverted

states, cf. the distribution denoted by “LIN” in Fig. 4.3.

by using a fitting result for estimating it, this effect occurs twice for the parametric
bootstrapping. Neither the theoretical value of F0 = 0.8 is within one standard deviation
of the reported fidelity (F para

FLS = 0.700± 0.012) nor the estimated fidelity for the initial
FLS fit. None of the bootstrapping methods reports a result which is in agreement with
the theoretical fidelity of 80% since F para

FLS = 0.700 ± 0.012, F non−para
FLS = 0.714 ± 0.012,

F para
ML = 0.777± 0.011 and F non−para

ML = 0.780± 0.011.
Obviously, the reported standard deviation is of the right order of magnitude for the
fidelity as can be seen in Fig. 4.3. The standard deviation of the linear inversion (see Sec.
4.4.2) is about 0.012. A very similar value can be obtained by means of the bootstrapping
method (0.011 for maximum likelihood and 0.012 for free least-squares). Nevertheless,
the estimated error bars are not evaluated for the state one is interested in, but instead
for a biased state. Furthermore, the true value lies not within the interval given by
the mean of the estimate and the error bars obtained by the standard deviation of the
bootstrapping. Consequently, bootstrapping is a highly questionable method to obtain
error bars when using an estimator with a significant bias as shown for ML and FLS
state estimators. Although the error bars can be roughly estimated in this example for
the linear fidelity, the error bars of non-linear function may not be determined correctly.
In [23], the bootstrapping method of the Fisher information [103] is analysed. There,
one learns that the standard deviation obtained via bootstrapping can be far too small.
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In this thesis, another method to find statistical information will be presented, that is
also applicable for non-linear functions like the Fisher information.

4.5 Linear evaluation

Since quantities like the von Neumann entropy or the purity cannot be evaluated on
states with ρ 6≥ 0, fitting methods like ML and FLS were applied, as they ensure the
physicality of the obtained state. In the previous section it could be shown that these
estimators suffer from a significant bias. Therefore, one has to decide whether the
statistics is large enough such that the bias is negligible or whether fitting cannot be
applied at all.

In the previously shown figures the fidelity was employed as a measure of the recon-
structed state. While only in the case of the Smolin state comparing the in general
unphysical state ρ̂LIN with its theoretical state was not possible, cf. Fig. 4.5, in all other
cases the fidelity could have been evaluated linearly, as the fulfilment of the condition
ρ ≥ 0 was not required. In this section, a method will be presented how to evaluate
non-linear, but convex or concave quantities of interest by using linear approximations to
the functions, i.e. directly from the data without employing intermediate fitting meth-
ods like maximum likelihood or free least-squares. Furthermore, a way how to estimate
(conservative) confidence regions for the quantities will be explained.

4.5.1 Linear approximation of convex & concave quantities

Evaluating quantities of interest for unphysical “states” gives results without any in-
formation value. For example, consider the entropy S(ρ) = − tr(ρ log(ρ)) which might
give imaginary values for ρ 6≥ 0. A possible approach to overcome this problem is to
linearly approximate non-linear functions. For a convex function a lower bound can be
determined by an appropriately chosen linear function, as well as all concave functions
can be upper bounded by straight lines (or in general by hyperplanes for multivariate
functions). Luckily, most of the interesting functions are either convex or concave func-
tions. Here, an overview of some of these functions will be given together with their
derivatives and a recipe, how to compute confidence regions for these quantities.

Fig. 4.7 illustrates the linear approximation for an univariate case. Consider a convex
function Q(x), i.e. Q(αx1 + βx2) ≤ αQ(x1) + βQ(y2) for α ∈ [0, 1] and β = 1 − α.
A lower bound for Q(x) can be determined by finding the tangent in any expansion
point x0. Therefore, Q(x) ≥ Q(x1) +Q′(x1)(x0 − x1) holds ∀x1 [101]. Fig. 4.7 already
clarifies that the inequality holds for all choices of x1 while the inequality is more tight
for some expansions than for others. The linear approximation by evaluating in x1 gives
a valid expression (blue line), but building up the inequality with x2 may be the better
choice (red line). The value of the linearisation around x2, evaluated at x, is closer
to the function value Q(x) than if one used the linearisation around x1. The previous
explanation for x ∈ R can be generalised to be used with density matrices. Therefore,
with an adequate parametrisation of ρ ≡ ρ(x) linearly determined bounds for Q[ρ(x)]
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x0x1 x2

Q

x

Figure 4.7: Convex functions can be bounded from below by linear functions. Irre-
spective of the evaluation point, a valid inequality Q(x0) ≥ Q(x1) + Q′(x1)(x0 − x1)
can be found, while some choices are better than others since their informative value
is larger. Linear approximation in x1 gives a valid information about Q(x0) while one
retrieves more information by using a more appropriate evaluation point as x2, as de-
picted by the red line. The value of the red approximation evaluated in x0 is closer to

Q(x0) than when using the blue approximation.

can be found, i.e.

Q1[ρ(x)] ≥ Q1[ρ(x0)] +∇Q1[ρ(x0)]T (x− x0) = tr(L1ρ(x)) (4.27)

Q2[ρ(x)] ≤ Q2[ρ(x0)] +∇Q2[ρ(x0)]T (x− x0) = tr(L2ρ(x)) (4.28)

for a convex quantity Q1 and a concave quantity Q2, respectively. Corresponding to the
discussed univariate case, the quality, i.e. the information value, of the approximation
of a function of density operators depends on the state that the function was expanded
around. For practical usage a linear operator L has to be determined based on linear
approximation. While L can be found by expanding around different states, i.e. a La
by expanding around ρ(ya) and Lb by using ρ(yb), it is an essential step to find a proper
operator L. For example getting to know that tr

[
ρ(x)2

]
≥ 1

2n for a n qubit state, is
unquestionably a veritable statement but without any information value since tr[ρ2] ∈
[1/2n; 1] holds for all n qubit states ρ, anyway. When another linear approximation would
deliver a larger value for the lower bound of the purity, finding this more informative L is
the current task. There are different approaches to find the best suited state to expand
around. One might choose the theoretical or the expected state as ρ(y). But since the
experimentally measured state could strongly differ from this - or the theoretical state is
even completely unknown - one might also use fitting approaches based on the measured
data. Thus, the linearisation can for instance be built with ρ(y) = ρ̂ML, where ρ̂ML

may be obtained via the maximum likelihood fitting from the linearly reconstructed
state. Note that ρ(y) must fulfil ρ(y) ≥ 0 as will be explained later. To find the best,
i.e. tightest bound, one could also optimise over all physical states ρ(y) and determine
the extremal value (maximal value for a convex function, minimal value for a concave
function) for the linear approximation. It is still an open question what the best strategy
to find the linear operator L is.
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Function Q(x)

Concave
Entropy (see 2.4.6) − tr(ρ log ρ)

Uhlmann fidelity (see 2.4.3) (tr[
√√

σρ
√
σ])2

Convex
Purity (see 2.4.5) tr(ρ2)

Fisher information [103] 2
∑

ij
(λi−λj)2

λi+λj
HijHji

Negativity (see 2.4.1) (
∑

i |λ(ρTAAB)i| − 1)/2 =
∑

λ(·)<0 |λ(ρTAAB)|

Table 4.1: Convex and concave functions can be linearly evaluated to estimate the
quantity also for non-physical density matrices. Note that lower bounds for the purity,
the Fisher information or the negativity are of avail as well as an upper bound for the
entropy. In contrast, in most cases one would be more interested in a lower bound for
the fidelity instead of bounding it from above. Due to its concavity, this is unfortunately
not achievable. The logarithm for evaluating the entropy is used to base two [5]. The λi
in the definition of the Fisher information denotes the ith eigenvalue of ρ as well as |ψi〉
labels the corresponding eigenstate while Hij identifies 〈ψi|H|ψj〉 with the operator H

to compute the Fisher information.

In Tab. 4.1 an overview of important quantities of interest is given. For concave functions
like the entropy or the fidelity, upper bounds can be found by using also states with ρ 6≥ 0.
Convex functions like the purity, the Fisher information or the negativity can be bounded
by below. In the following, the method how to compute the linear approximation of these
quantities will be explained.

Composing linear operators

An appropriate parametrisation of the states is again given by ρ = I/2n+
∑

i xiSi which
is equivalent to the parametrisation in Eq. 4.12 and to the decomposition of ρ into a
correlation tensor (Eq. 2.19), except for the factor of 1/2n to be absorbed now into the
xi. In principle, all choices for a basis {Si}i with tr(SiSj) = δi,j are valid. Here, using
the Pauli matrices as a basis seems the most appropriate option and will be used in
the following. For a quantity Q(x) = Q[ρ(x)] being convex in x and with ρ(x) ≥ 0 a
lower bound will be determined. For that purpose, one has to find a state ρ1(x0) with
ρ1(x0) ≥ 0 where a Taylor expansion [101] up to first order of the quantity has to be
constructed. Then, for the state ρ0 obtained by linear inversion, for which ρ0 ≥ 0 may
not necessarily hold, an inequality can be constructed, i.e.

Q[ρ0] ≥ tr[ρ0L(ρ1(x0))]. (4.29)

Here, the linear operator L(ρ1(x0)) decomposes into

L(ρ1(x0)) = l0I +
∑
i

liSi, (4.30)
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Function ∂iQ(x)

Upper bounds
Entropy − tr[Si(log ρ− I)]
Uhlmann fidelity 2

√
Q(x)

∑
j

1
2
√
µj
〈wj |
√
σSi
√
σ|wj〉

Lower bounds
Purity 2 tr(Siρ)

Fisher information 4
∑

ijk
λiλj+λiλk+λjλk−3λ2

i
(λi+λj)(λi+λk) HijSjkHki

Negativity − tr(ρABΠTA)

Table 4.2: The partial derivatives of the functions listed in Tab. 4.1. The concave
quantities (entropy and fidelity) can be bounded from above, while for the convex
measures (purity, Fisher information and negativity) lower bounds can be estimated.
In the formula of the fidelity, µi and |wi〉 label the eigenvalues and the associated
eigenvectors of

√
σρ
√
σ; σ belongs to the target state that ρ is compared with. For the

negativity the projector ΠTA onto the eigenspace belonging to the negative eigenvalues
of ρTA

AB has to be computed.

where the coefficients l0 and li are determined by

l0 = Q[ρ1(x0)]−
∑
i

yi
∂

∂xi
Q(x0), (4.31)

li =
∂

∂xi
Q(x0). (4.32)

Since the partial derivatives of the quantity are needed to be computed, a list of those
derivatives6 for the considered quantities is given in Tab. 4.2. With this scheme it
is possible to estimate or at least bound quantities also for non-physical states. This
procedure will be further illustrated by an example.

Consider now the convex function of the purity P (ρ) = tr
(
ρ2
)
. Using the parametrisa-

tion ρ = I/2n+
∑

j xjSj , the purity becomes P (ρ) = tr
(
ρ2
)

= tr

((
I/2n +

∑
j xjSj

)2
)

.

The partial derivative of the function with respect to xi is needed for building up the
linear operator. Thus,

∂P (ρ(x))

∂xi
= tr

∂
(
I/2n +

∑
j xjSj

)2

∂xi

 = tr

2

I/2n +
∑
j

xjSj

Si

 = 2 tr(ρSi).

(4.33)
Then, one has to find a state ρ1(y) to construct the linear approximation. This state has
to fulfil the physicality constraint of ρ1(y) ≥ 0 since the purity P (ρ1(y)) as a non-linear

6Tobias Moroder. Unpublished.
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function will be evaluated for this state. Thus, the linear operator becomes

L(ρ1(y)) =l0I +
∑
i

liSi

=I

(
tr
(
ρ1(y)2

)
− 2

∑
i

yi tr(ρ1(y)Si)

)
+ 2

∑
i

tr(ρ1(y)Si)Si

=I tr
(
ρ1(y)2

)
+ 2

∑
i

tr(ρ1(y)Si)(Si − yiI).

(4.34)

Although Eq. 4.34 looks rather lengthy, it fully corresponds to a Taylor expansion
up to the first order of tr(ρ2) when evaluating around ρ = ρ1(y). Now, this operator
can be used to find a lower bound for the purity of another state ρ(x) by calculating
tr(ρ(x)L(ρ1(y)). Note that ρ(x) ≥ 0 does not necessarily need to hold because this
expression corresponds to a linear evaluation where possible unphysicalities do not cause
any problems.

Before examples of this method will be presented, the calculation of error bars will be
discussed.

4.5.2 Error calculation

Although it is possible to determine the error of each matrix element of the linearly
estimated density matrix by using Gaussian error propagation, these error bars are not
very useful when one is interested in single quantities like the fidelity. In this case,
directly reporting the error of the quantity, that one is interested in, is of more avail.
Firstly, this section argues why error bars in the state space are not most appropriate.
Instead, using the errors of the obtained measurement data by means of Gaussian error
propagation to compute the error of a quantity is more appropriate. Unfortunately,
this cannot be done for non-linear quantities. To overcome this, the error calculation
based on the Hoeffding inequality [24] will be presented. With this calculus one finds
an expression for estimating the confidence intervals of the functions directly.

Error bars in state space

Assume that a confidence region Cρ in the state space can be used to easily find the
confidence region CQ for the quantity of interest Q such that the confidence interval of
Q is for example given by

CQ = [min
ρ∈Cρ

Q(ρ); max
ρ∈Cρ

Q(ρ)], (4.35)

i.e. one tries to find the minimal and maximal values for Q for all states ρ that are within
the confidence region Cρ. The illustrative example of [23] will be recapitulated here
to emphasise why this way of constructing confidence intervals is not the best choice.
Suppose a probability density function f(~x) with ~x ∈ R2 is given where

f(~x) =
1

2π
√

det(Σ)
exp

(
−1

2
(~x− ~µ)TΣ−1(~x− ~µ)

)
(4.36)
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corresponds to a two dimensional normal distribution with the positive-definite covari-
ance matrix Σ ∈ R2×2 and the mean ~µ ∈ R2. For simplicity, assume Σ = σI2×2 and
without loss of generality ~µ = ~0. The confidence region for a sample according to this
distribution can be build up in different ways. The probability density function of Eq.

Figure 4.8: The probability density function of Eq. 4.36 as a three dimensional plot
(left). Two exemplary choices for confidence regions are shown and finally compared for
this function (right). The green confidence region C(1) = [−σ, σ] × [−∞,∞] gives the
smallest possible spread in x direction, while being maximally extended along y. The
red choice in contrast is chosen symmetrically with C(2) = {

√
x2 + y2 ≤ 1.52σ} [23].

This schematically shown behaviour becomes even more dramatical for more dimen-
sions.

4.36 is shown in Fig. 4.8 in the left plot. One might want to construct a symmetric con-
fidence region for this function as shown by the red cylindrical shape. The probability
value obtained by integrating over the enclosed area of the red shape is the same as if
one chooses a confidence region like the green confidence region. While both choices are
valid for one and the same confidence level, the regions look rather different. If one asks
for the confidence region of the function of the projection onto the x direction, the green
choice is smaller than the symmetric, red one. Therefore, recall the Gaussian probability
density function of Eq. 4.36. If one wants to find a confidence region corresponding to
one standard deviation, the confidence region shall contain 68.3% of the possible results.
Since the probability density is normalised, it must hold

∫
C f(~x)d~x = 0.683. Choosing

a symmetric region, one obtains

0.683 =

∫ 2π

0
dφ

∫ R

0
drr

1

2πσ
exp

(
−1

2

r2

σ2

)
= 1− exp

(
−1

2

R2

σ2

)
⇒ R ≈ 1.52σ. (4.37)

Consequently, the symmetric choice of the confidence region is not the best option if
one is interested only in a single value. Thus, the confidence region becomes smallest if
especially defined for the quantity one is interested in. Consider that one is interested
in the projection in x direction, only. Then,

0.683 =

∫ x0

−x0

dx

∫ ∞
−∞

dy
1

2πσ
exp

(
−1

2

x2 + y2

σ2

)
⇒ x0 = σ. (4.38)

If one wants to give confidence regions for the density matrix itself, these regions become
huge while the confidence region of for example the fidelity might be much smaller.
Naturally, the error bars of a linear measure like the fidelity can be determined directly
by means of Gaussian error propagation. How error bars for linearly approximated
non-linear functions can be determined, will be explained in the following section.
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Direct calculation of confidence intervals

For example, consider the bipartite negativity (Sec. 2.4.1), that depends on the eigenval-
ues of the partial transpose of the state. It is difficult to express the bipartite negativity
in terms of the measured count data and, therefore, to estimate the error bars by means
of Gaussian error propagation. In contrast, the error information is obtained by means
of the linear approximation of the non-linear function. A direct way to find a confidence
region for the quantities of interest is given by applying Hoeffding’s inequality [24].
Consider n independent real random variables Xi bounded within a certain interval, i.e.
Xi ∈ [a, b] ∀Xi. Hoeffding derived an inequality to bound the probability that the sum
of the random variables deviates by a certain amount from its respective expectation
value [24]. For that purpose, denote the sum of the random variables with S =

∑
iXi.

Then [104]

P (|S − S| ≥ α) ≤ 2 exp

(
− 2α2∑n

i=1(bi − ai)2

)
= δ, (4.39)

where P (|S−S| ≥ α) denotes the probability that S deviates more than α from its mean
S. While with Eq. 4.39 the probability that a certain deviation occurs can be computed,
it is more interesting to find the confidence region belonging to a certain probability.
Therefore, one is interested in an expression for α(δ) describing the maximal deviation
α for a given confidence level δ:

α(δ) =

√√√√−1

2

n∑
i=1

(bi − ai)2 ln

(
δ

2

)
. (4.40)

If one is interested in for example a 90% confidence region, the probability that the
outcome deviates more than this region should be less than 10%, thus δ = 0.10. Hence,
δ may be replaced by 1− γ, where γ labels the confidence level.

Regard now a linear function7 QL(ρ0) = tr(Lρ0). A confidence region is given by Eq.
4.39 and Eq. 4.40 for P

(
QL(ρL) ∈ [QL(ρ0)− C2s

L ;QL(ρ0) + C2s
L ]
)
≥ γ with

C2s
L =

α√
NS

=

√
−h

2 ln((1− γ)/2)

2NS
. (4.41)

Here, h2 =
∑n

i=1(bi − ai)2 =
∑

S(maxi l
S
i − mini l

S
i )2. Since maxi l

S
i (mini l

S
i ) denotes

the value of the linear operator that can be achieved maximally (minimally) in basis S.
Therefore, the linear operator has to be decomposed into its measurement projectors8.
The number of repetitions NS is assumed to be equal for all settings S. Since the former
approach is based on linearising convex or concave function, one does only get a bound by

7QL(ρ0) = tr(Lρ0) = tr
(∑

i,S P (i|S)MS
i L
)

=
∑
i,S P (i|S) tr(MS

i L) =
∑
i,S P (i|S)lSi .

8The linear operator L can be parametrised in different ways:

L = l0I +
∑
i

liSi︸ ︷︷ ︸
Decomposition into e.g. Pauli basis

=
∑
i,S

lSi M
S
i︸ ︷︷ ︸

Decomposition into measurement projectors

, (4.42)

where the first decomposition L = l0I+
∑
i liSi corresponds to the construction of the linear operator as

given in Eq. 4.30. The second identity, i.e. L =
∑
i,S l

S
i M

S
i is the parametrisation of L in terms of the

measurement projectors MS
i . Note that the coefficients li in the first decomposition are distinct from lSi

in the second one.
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an inequality. Therefore, two-sided confidence intervals are not needed. Instead, a more
meaningful ansatz leads to a one-sided confidence region weakening the inequality. With
this, one finally obtains an expression for the probability that the true value QL(ρ0) of a
convex (concave) function exceeds (undershoots) a threshold determined by the data and
afterwards relaxed by an error bound. Thus, Pρ0 [QL(ρ0) ≥ Q(ρ̂LIN(f))−CL] ≥ γ holds
for convex functions, while concave functions fulfil Pρ0 [QL(ρ0) ≤ Q(ρ̂LIN(f)) +CL] ≥ γ.
Here, CL is given by

CL ≡ C1s
L =

√
−h

2 ln(1− γ)

2NS
. (4.43)

Note the difference of the factor 2 in the equations for two-sided C2s
L (Eq. 4.41) and

one-sided C1s
L (Eq. 4.43) confidence regions. An exemplary evaluation of this Hoeffding

confidence bound can be found in Sec. A.6 as well as in [104, 105]. While these error
bars may not be optimal, they are only based on the assumption of independent random
variables, are easy to evaluate.
Consider for example the bipartite negativity (Sec. 2.4.1), that depends on the eigen-
values of the partial transpose of the state. Since it is difficult to express the bipartite
negativity in terms of the measured count data, the error information is obtained by
means of the linear approximation of the non-linear function. Exemplarily using the
Hoeffding calculus demonstrates that error bars will be overestimated. Nevertheless,
they help to rate the estimated value.

4.5.3 Examples

After establishing the fundamental methods for linear estimating different quantities of
interest, some examples will further clarify this technique. Therefore, the negativity of a
partially transposed state (see Sec. 2.4.1) will be considered. States that are separable
with respect to the chosen partial transposition deliver a zero-value for the negativity,
while entangled states can be detected by giving a positive value for this bipartite neg-
ativity. Here, the negativity of a product state and a Greenberger-Horne-Zeilinger state
will be investigated. The considered product state is again |ψ〉 ∝ (|H〉 + |P 〉)⊗4. Con-
sequently, this product state is fully separable, irrespectively of the used partial trans-
position. Fig. 4.9 shows the negativity of the partial transpose of the reconstructed
state when the entanglement with respect to the cut AB|CD is evaluated. The linearly
estimated lower bound for the negativity is compared with the values obtained for the
reconstructed states using maximum likelihood and free least-squares fitting methods.
The state is theoretically expected to show no entanglement, which is indicated by the
dashed line. Indeed, the linear estimation delivers a lower bound for the negativity,
which on average does not detect any entanglement. ML (blue) and FLS (red) in con-
trast detect entanglement. Please note that the linear estimation does not make any
statement about the state being separable, but at least does not detect unexpected en-
tanglement. While in Fig. 4.3 the fidelity was underestimated by the reconstruction
methods that are based on fitting, now the situation is more delicate. Even fully sepa-
rable states are detected to be entangled when using fitting methods for data with finite
statistics. The L operator, that is used according to Eq. 4.28, is in this case obtained
by expanding the negativity around a state given by a maximum likelihood fit on the
data [23]. One uses a set of frequency data to reconstruct a state ρ̂ML which then is
employed to build up the operator L. Afterwards, this operator is applied to another set
of data to finally obtain tr(ρL). If instead the theoretical state is considered to build up
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Figure 4.9: The bipartite negativity of a product state for simulated states with
NS = 100 counts per basis setting and admixed white noise such that F0 = 80%. The
linear estimation (green histogram) gives a lower bound for the true value (dashed
line), while maximum likelihood (blue histogram) and free least-squares (red) are used
to reconstruct the 500 simulated states for which the negativity is calculated. The mean
of the lower bounds (green line) give valid results, while both fitting methods detect

more entanglement than present in the underlying fully separable quantum state.

the linear operator, this operator equals the null operator, always delivering the value 0
for the lower bound of the bipartite negativity, irrespective of the evaluation state ρ(x).
This again gives rise to the question how to find the optimal operator L.

The negativity is not only overestimated for a fully separable state but also for the
already considered GHZ state, which can be seen in Fig. 4.10 (right subfigure). Both, the
blue and the red histograms, show that the negativity obtained for maximum likelihood
and free least-squares is above the theoretical expectation value for the GHZ state with
admixed white noise (F0 = 80% as used above) of 0.380, which is again shown as the
dashed line. This emphasises the dependence of the estimated bound on the linearisation
operator L. Indeed, in both cases the lower bound (green histogram) is on average below
the theoretical value, while for better choices - as for example the operator Ltheo - the
mean of the obtained bounds is closer to the theoretical value than for worse estimated
operators. The 68.3% confidence region for the operator Ltheo is obtained with the
Hoeffding calculus to be CL = 0.031. This is in full agreement with the considerations
of the linear approximation of convex quantities as illustrated in Fig. 4.7.
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Figure 4.10: The bipartite negativity of a Greenberger-Horne-Zeilinger state with
four qubits and admixed white noise (F0 = 80%). The linear approximation delivers
lower bounds for the bipartite negativity. The quality of the approximation depends
on the chosen linear operator. The expectation value of 0.380 is obtained for the lower
bound if the operator is constructed by using the theoretical state (left figure). Using
the Hoeffding calculus, one finds a 68.3% error bound at 0.380 − 0.031. If instead the
operator is based on fitting procedures (right figure), the obtained bound is less tight

to the true value.

4.6 Eigenvalue modification

The reconstruction of a density operator based on experimental data often leads to
unphysical states, as explained in detail previously. The frequently mentioned constraint
of ρ ≥ 0 is equivalent to the property that all eigenvalues of ρ have to be non-negative9.
It may be possible to obtain an unbiased estimate of the state if making some appropriate
assumptions on the underlying state and therefore dropping the generality of the state
estimator.

States prepared in the laboratory are never pure due to experimental imperfections.
This motivates the noise model of

ρ = pρ0 + (1− p)ρWN, (4.44)

where white noise is admixed to an underlying quantum state ρ0. Hence, for the limit
cases of p = 1 no additional white noise is admixed to ρ0 and for p = 0 the state ρ only
consists of white noise. For practical purposes the case of p ∈ (0, 1) will mainly be of
interest. Throughout this section, a specialised quantum state reconstruction method for
states of this noise model will be presented. Here, the noise model is exemplarily chosen
to show the gain in quality of a quantum state estimation with a priori knowledge. If
not only the noise model is predetermined, but also the amount of admixed white noise
is assumed to be approximately known, the quantum state estimator can be further
improved.

9ρ ≥ 0 ⇐⇒ 〈φ|ρ|φ〉 ≥ 0 ∀|φ〉. Choosing ρ =
∑
i λi|ψi〉〈ψi| and |φ〉 = |ψj〉, one obtains

〈ψj |
∑
i λi|ψi〉 〈ψi|ψj〉︸ ︷︷ ︸

δi,j

= λj ≥ 0.
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Firstly, the behaviour of the state’s eigenvalues will be examined when a set of finite
measurement repetitions is simulated. Afterwards, motivated by insights from this study,
a specialised quantum state estimator will be proposed and analysed.

4.6.1 Behaviour of eigenvalues due to finite statistics

Because of the admixture of white noise in the noise model given in Eq. 4.44 it is helpful
to investigate the behaviour of the eigenvalues of the maximally mixed state (Sec. 2.5.8)
first. The eigenvalues of the n qubit maximally mixed state ρWN are 2n-fold degenerate
with λ1 = · · · = λ2n = 1

2n . The state can be parametrised in its eigenvalues λi and its
eigenvectors |ψi〉 according to

ρ =
2n∑
i=1

λi|ψi〉〈ψi|, (4.45)

where the {|ψi〉}i is a set of any 2n mutually orthonormal states, each contributing with
the same probability λi = 1

2n . While for infinite count statistics the linearly recon-
structed state equals ρWN, for finite number of counts per basis setting the eigenvalues’
degeneracy is in general lifted. By investigating the eigenvalues of the n = 4 qubit maxi-

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

50

100

150

200

250

300

350

400

450

500

Eigenvalue

#
 E

ig
e
n
v
a
lu

e
s

Figure 4.11: The distribution of the 24 eigenvalues of 500 sampled maximally mixed
states ρWN with n = 4 qubits is shown. The simulated states are obtained when
applying a Poissonian probability distribution to obtain a certain outcome according
to Eq. 2.78. The expectation value for the total number of counts per basis setting was

given by NS = 100.

mally mixed state with NS = 100 counts per basis setting, one finds that the distribution
of the eigenvalues corresponds to a distribution with a semi-circular shape. In Fig. 4.11
the histogram of the eigenvalues of the mentioned state is shown. The distribution of
the eigenvalues is centred around the value 1

2n , which corresponds to the degenerate
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eigenvalue for the theoretical case. The radius of the semi-circular distribution can be
empirically estimated to be around R ≈ 0.15 for this case of 4 qubits and 100 counts
per basis setting. As one would also naively assume, the spectral radius decreases with
the statistics, which will be further investigated in Sec. 4.6.2.
The spectral probability density function of random matrices is its subject of research,
cf. [106–109]. A grand goal of this field of study is to find the statistics of eigenvalues
of random matrices with N × N elements for limN → ∞. The results obtained from
random matrix theory suggest a semi-circular distribution of the spectral probability
density function for matrices with elements of finite variances - at least for the case of
infinitely large matrices. This serves as a motivation for empirical investigations for a
low number of qubits.

While all eigenvalues with λi ∈ [0, 1] can be interpreted as probabilities, this interpre-
tation fails for λi < 0 (and for λi > 1, which as well may occur by reconstructing
pure states with finite statistics). To overcome the problem of negative eigenvalues,
one approach is to estimate how much the finite statistics could cause a scatter of the
eigenvalues and finally try to revert this scatter. In this case the degeneracy is lifted
towards a semi-circular distribution, i.e. the eigenvalues are found with high probability
in a range of [M −R;M +R], where R and M label the radius and the midpoint of the
interval, respectively. A state ρ0 with admixed white noise has 2n− rank(ρ0) degenerate
eigenvalues at λrank(ρ0)+1 = · · · = λ2n = 1−p

2n , where p denotes the amount of admixed
white noise as given in the noise model of Eq. 4.44. These degenerate eigenvalues can
cause the non-physicality of the state by becoming negative. The method presented here
is based on the idea that eigenvalues within this interval are modified such that they
are set to their respective average. The main concept of this quantum state estimation
is easy and straight-forward, but the concrete implementation can be done in different
ways. One of those will be briefly presented.

Error of matrix elements

According to Sec. 2.7 and to the given linear state reconstruction procedure presented
there, the non-full correlation tensor elements are subject to lower statistical deviations
than the full correlations. Thus, with the parametrisation given in Eq. 2.19 some matrix
elements scatter more than others. Investigating the simple n = 1 qubit example for the
density matrix, i.e.10

ρ =
1

2

(
T0 + TZ TX − iTY
TX + iTY T0 − TZ

)
, (4.46)

the larger variance of the anti-diagonal elements compared to the diagonal elements is
obvious as T1 does not fluctuate. While in the single qubit case only two groups of entries
with same variances exist (diagonal and anti-diagonal elements), in general the matrix
elements of a n qubit density matrix can be put into n + 1 groups of same variances.
Again, the lowest variance occurs for the 2n

(
n
0

)
diagonal entries, which depend not only

on the full correlation TZZ...Z , but also on the correlations T00...0, T00...Z , . . . , TZZ...0, i.e.
all possible tensor products of σz and σ0. The second lowest variance can be found for
the 2n

(
n
1

)
elements, to which amongst others the correlations T00...0X , T00...0Y , T00...X0,

. . . , TY 0...00 contribute. Finally, the largest statistical scatter appears in the 2n
(
n
n

)
anti-

diagonal elements corresponding to TXX...X , TXX...Y , TXY ...X , . . . , TY Y ...Y .

10To distinguish full and non-full correlations, here the correlation tensor will be indexed with 0, X,
Y and Z.
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Here, the largest statistical scatter occurring for the maximally mixed state will be
deduced with the help of Gaussian error propagation to estimate the dependence of
the variance on the statistics. Since the variance of the anti-diagonal terms is largest,
the discussion will be restricted to these elements to obtain an upper bound of the
variances. The standard deviation for all anti-diagonal elements {ρi,2q−i}i is equal,
therefore exemplarily the element ρ1,2n is considered:

∆ρ1,2n =

√√√√∑
i,S

(
∂ρ1,2n

∂cSi

)2 (
∆cSi

)2
. (4.47)

As already argued before, the anti-diagonal terms depend on correlations of the mea-
surements σx⊗· · ·⊗σx⊗σx, σx⊗· · ·⊗σx⊗σy, σx⊗· · ·⊗σy⊗σx, . . . , σy⊗· · ·⊗σy⊗σy.
For each basis of those 2n settings 2n outcomes are possible, therefore 4n summands are
left in the summation over outcomes i and settings S. After carrying out the partial
derivatives (see Sec. A.2.2), one finally obtains

∆ρ1,2n =
1

N2
S

√√√√√∑
S

∑
i;odd

cSi

2 ∑
i;even

(
∆cSi

)2
+

∑
i;even

cSi

2 ∑
i;odd

(
∆cSi

)2
, (4.48)

where even and odd denote even or odd parity of the corresponding outcome. With the
assumption of Poissonian distributed numbers of counts, Eq. 4.48 can be estimated for
the n qubit maximally mixed state. According to Sec. A.7 one finds that the upper
bound for the largest occurring variances - i.e. those on the antidiagonal of the matrix
- is decreasing with the number of measurement repetitions NS such that

∆ρ1,2n ≤
√

2n

NS
. (4.49)

With the aforementioned arguments, this expression is also an upper bound for all other
variances of the density matrix.

4.6.2 Dependency of the semi-circular distribution on the number of
counts

Fig. 4.11 showed the histogram of the eigenvalues of 500 maximally mixed states simu-
lated with finite count statistics of NS = 100. The distribution clearly can be assumed to
be semi-circular - or strictly speaking: semi-elliptic. The distribution is centred around
1/24 and extends in this case about 0.15 in both directions, whereby the approximation

f(x) =

{
1
Z

√
R2 − (x− x0)2, for x ∈ [−R,R] ,

0, otherwise
(4.50)

for the spectral probability density function with the radius R = 0.15, the centre x0 =
1/24 and the normalisation Z =

∫ R
−R
√
R2 − (x− x0)2dx = πR2/2 is in good agreement

with the observed histogram. The radius of the semi-elliptic function f(x), i.e. the
spectral probability density function, is clearly dependent on the statistics which is given
by the number of measurement repetitions NS per basis setting S. This dependency can
be read from Fig. 4.12, where for the case of the maximally mixed state with n = 4
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Figure 4.12: Radius of the maximally mixed state with 4 qubits for finite statistics
in a log-log plot. The obtained radii for each histogram as shown in Fig. 4.11 decrease

according to
√

1
NS

with the statistics NS . The behaviour corresponds to the standard

deviations of the different matrix elements, which are grouped into five different classes
as described in Sec. 4.6.1.

qubits the radius is determined for different NS . Furthermore, the standard deviation
of the different groups of matrix elements is calculated according to the discussion in
Sec. 4.6.1. Eq. 4.49 leads to a relationship of 1√

NS
between the total number of counts

NS per basis setting and the estimation for the upper bound of the standard deviation
of the matrix elements. This relationship is perfectly reflected in Fig. 4.12, where
the standard deviations of the different groups of matrix elements are shown. This
figure shows that also the radius decreases with an 1√

NS
behaviour which corresponds

to a straight line in a log-log-type plot like Fig. 4.12. The semi-elliptic shape of the
distribution’s approximation f(x) allows to estimate which eigenvalues originate from
a set of degenerate eigenvalues and are distributed around some mean due to the finite
statistics. This motivates the following state estimation method.

4.6.3 Averaging eigenvalues

The method based on the empirical insights from studying the distribution of eigenvalues
is very straightforward. For the chosen noise model of ρ = pρ0+(1−p)ρWN one observes a
distribution of eigenvalues around their value of degeneracy of 1−p

2n (see Sec. 4.6.1). The
measured frequency data are used for a linear state reconstruction ρ̂LIN. Afterwards,
an eigendecomposition of this matrix is performed yielding the eigenvalues {λi}i and
the respective eigenstates {|ψi〉}i. If the lowest eigenvalue λ1 = λmin is found below
zero, i.e. ρ̂LIN 6≥ 0, the average λ over the eigenvalues {λ1, . . . , λk} within the interval
I = [λ1; p

2n − λ1] is calculated. If no further assumption for p is made, a conservative
definition for I is used with I = [λ1; p

2n − λ1]. Afterwards, the obtained value is used
for all eigenvalues of the given interval I. Finally, the state estimate is given by the



Chapter IV. Bias of Estimators 72

reconstructed state according to

ρ̂MOD =
2n∑
i=1

λi|ψi〉〈ψi| =
k∑
i=1

λ|ψi〉〈ψi|+
2n∑

i=k+1

λi|ψi〉〈ψi|. (4.51)

If further assumptions are made, the procedure can be modified. Consider the case that
one knows the amount of admixed white noise to be small, i.e. one guesses a value for p
in the noise model. Since the degenerate eigenvalues are expected to be 1−p

2n , the interval
for the eigenvalues to average can be adjusted. Suppose that one may use for example
p ≤ 0.05. Then, the eigenvalues of the admixed white noise are found at 0.05

2n or below
for the theoretical state. Assuming a symmetric distribution of the eigenvalues due to
the finite statistics, they will be spread within [λ1; 0.05

2n − λ1]. This further assumption
can preserve low eigenvalues as will be shown later with experimental data.
If not further stated, the quantum state estimator based on this procedure will be called
MOD to emphasise the modification of the eigenvalue. The estimates will be denoted
by ρ̂MOD. The variation of MOD based on further assumptions will be labelled with
MODb.

Finally, another more adaptive variant of this procedure is conceivable. One might
average over the eigenvalues {λ1, . . . , λk}, such that

λ = min
k;

∑k
i=1 λi≥0

1

k

k∑
i=1

λi (4.52)

is fulfilled. Consequently, one averages over the lowest k eigenvalues until their sum is
non-negative anymore. This procedure ensures that the estimated state fulfils11 ρ ≥ 0.

4.6.4 Persistence of major contributions

One can express the state ρ in terms of its eigenvalues according to Eq. 4.45. Obviously,
large eigenvalues contribute most to the state and carry the essential information while
the small eigenvalues are often of no special interest. The presented method modifies
the small eigenvalues, that can possibly be found below zero, to ensure ρ ≥ 0, but does
not affect the larger eigenvalues. Consider for example a state like the often mentioned
GHZ state with admixed white noise such that F0 = 80%. The large eigenvalue λmax

of this state is on average λmax = 0.8. Theoretically, the corresponding eigenstate
is the pure GHZ state. Since only the eigenvalues of the admixed white noise are
modified, the contribution of the GHZ state stays the same. One might face the problem
that the measured state contains contributions of coloured noise with small eigenvalues.
Inherently, if these contributions are within the range of the eigenvalues that have to
be modified, the eigenvalues of the coloured noise are finally set to the averaged value.
These contributions, that are indistinguishable from the eigenvalues of the noise, are
therefore not reconstructed correctly by this method. This problem will be discussed
later when treating the non-generality of the method.

11Consider the case of a pure state with finite statistics where for example λmax > 1. Then, the
average of all other eigenvalues is negative. In this case the adaptive variant averages over all eigenval-
ues, delivering the maximally mixed state. Obviously, this result is strongly biased. Nevertheless, all
estimates fulfil ρ̂MOD ≥ 0.



Chapter IV. Bias of Estimators 73

4.6.5 Obtaining the error of the state

The method to reconstruct a quantum state with the described modification on the
eigenvalues of the state is statistically speaking a point estimation method exactly like
the already discussed maximum likelihood and free least-squares estimators. Unlike a
region estimator, the point estimator does not provide any information about the quality
of the estimated value [110]. Consequently, one has to come back to bootstrapping
methods to evaluate error bounds, as described in Sec. 4.2.4. Since the state estimation
can be - when applied to states belonging to the chosen noise model - unbiased, non-
parametric and parametric bootstrapping methods do not further shift the mean of
the obtained quantity. Here, one does not report the standard deviation of a quantity
evaluated of another state, as it happens when using bootstrapping with fitting methods
for error estimation. In contrast, the standard deviation obtained by bootstrapping is
evaluated by means of the desired state.

4.6.6 Numerical investigation

Finally, the performance of the proposed method for quantum state estimation will be
investigated using numerical methods. In correspondence to the investigation of the bias
of maximum likelihood and free least-squares state estimators, the mainly considered
state is a four qubit |GHZ〉 state with admixed white noise such that its fidelity with
respect to the pure |GHZ〉 is 80% (F0 = 80%, p = 0.786 in the noise model). At
first, the quantum state estimation by modification of eigenvalues is tested with a linear
measure. Here, the fidelity with respect to the theoretically expected state is regarded.
Afterwards, also non-linear measures are treated. Since the direct evaluation of the
state obtained by linear inversion is not meaningful, the values are compared to those
obtained by linearisation of the respective convex or concave quantities as previously
explained. Furthermore, the respective values for states reconstructed using maximum
likelihood and free least-squares methods are shown for comparison.

Fidelity

The fidelity is again used as a linear measure12 to compare the values determined by the
states of linear inversion (Sec. 4.2.1) with those of the states obtained after modifying
eigenvalues. Fig. 4.13 shows the great overlap of the distributions of the fidelities
for the two compared estimators. The linearly inverted state gives a value of FLIN =
0.799±0.012, while the quantum state reconstruction by modification of the eigenvalues
delivers the same value of FMOD = 0.799 ± 0.012. Both results are in good agreement
with the theoretical expectation of F0 = 0.8. In contrast, Sec. 4.4 showed that the fidelity
of maximum likelihood and free least-squares estimators are far off the expected value
(FML = 0.788±0.010, FFLS = 0.749±0.010). The good agreement of the reconstructed
states ρ̂MOD with the expectation can also be explained by the argumentation of Sec.
4.6.4. The largest eigenvalue - the main contribution to the state - remains unmodified
in this case. The eigenstate corresponding to this largest eigenvalue has a great overlap
with the |GHZ〉 state, whereby no major change of the fidelity is expected by this
reconstruction method for this type of state.

12The fidelity is only linear if compared with a pure state like the |GHZ〉 state in this case. Then,
〈ψ|ρ|ψ〉 is linear in x for the given parametrisation of ρ ≡ ρ(x).
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Figure 4.13: GHZ states simulated with 500 different diced sets of frequencies with
admixed white noise and NS = 100 counts per basis setting, are evaluated. Here, the
proposed state estimation is used to determine the fidelity with respect to the pure
4 qubit GHZ state (red). The blue histogram shows the distribution of the directly
linearly evaluated fidelity. This distribution is almost completely hidden by the state
estimator based on modification of the eigenvalues (MOD), indicating a nearly perfect

overlap. The theoretical value of F0 = 80% is given by both estimators.

Non-linear measures

Unlike the fidelity, non-linear measures cannot be evaluated meaningfully on the lin-
early inverted state if ρ̂LIN ≥ 0 does not hold. Therefore, these non-linear functions are
compared between the reconstructed state ρ̂MOD and the lower or upper bound, respec-
tively, obtained by the linearisation as described in Sec. 4.5. The first quantity to be
investigated is the purity. Since the purity tr(ρ2) =

∑
i λ

2
i corresponds to the sum of the

squared eigenvalues, one could imagine that this quantity is biased easily by applying a
method modifying the eigenvalues. To discriminate the direct linear evaluation (LIN )
from the estimate obtained by linear approximation, the latter will be called BND. This
name is chosen to emphasise the fact that one obtains (one-sided) bounds, solely.

In contrast to one’s expectation, the purity of the reconstructed states ρ̂MOD is similarly
distributed as the lower bounds obtained by linearly approximating the purity, which is
depicted in Fig. 4.14. Please note that the linear approximation does not necessarily give
a value close to the real value, but only delivers a one-sided bound. Nevertheless, the fact
that the theoretical expected value is within the error bounds of the red distribution
of MOD, suggests a good quality of the estimation, at least for the considered state.
For the eigenvalue modification, the purity is obtained to be PMOD = 0.653 ± 0.019,
while the linear bound is determined to be 0.631 ± 0.019, when expanding around the
states reconstructed with MOD. To linearise around the state found by modification
of the eigenvalues, another 100 counts per basis setting are recorded. Afterwards, this
additional set of data is used to find a state ρ̂MOD. This state is applied to construct a
linear operator L according to Sec. 4.5. These bounds will be denoted by BND1. Using
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Figure 4.14: The purity of 500 Greenberger-Horne-Zeilinger states with admixed
white noise (F0 = 80%) is determined via the reconstruction method by modifying
the eigenvalues (MOD, red). The blue histogram shows the distribution of the lower
bounds (BND1) to the purity by a linear approximation. The linear approximation is
done according to Sec. 4.5, where the linear operator is obtained by using ρ̂MOD with
additional data. The green distribution (BND2) shows the lower bounds for the purity

when constructing the linear operator with the theoretical state.

instead the linear operator for the theoretical value, one obtains 0.642 ± 0.019 for the
lower bound BND2. The theoretically expected value of P0 = 0.643 is therefore within
the error bars of the purity of the reconstructed state and in agreement with the lower
bounds, respectively.

Since this study is based on a huge amount of simulated states, the illustration in
Fig. 4.14 shows the distribution of the directly obtained bounds without calculation
of confidence regions, only. The effect of a 68.3% Hoeffding confidence level is now
calculated, but not shown in the figure. The confidence region for the linear operator
based on the theoretical state gives a value of CL ≈ 0.048. Therefore, using the linear
bound BND2, one obtains on average the statement that with at least 68.3% probability
the purity is larger than 0.642 − 0.048 = 0.594. Indeed, this is a veritable information,
but not very rigorous. The value for CL for a 68.3% confidence level is for BND1 on
average13 CL = 0.059, leading on average to the statement that the true value is greater
than 0.631− 0.059 = 0.572 with a probability of at least 68.3%.

Also, the negativity is inspected as a quantity of interest by using the proposed quan-
tum state reconstruction method. In Sec. 4.5.3, the bipartite negativity for the cut
AB|CD was inspected for free least-squares and maximum likelihood estimators. This
bipartite negativity is also used to study the state estimator based on modification of
the eigenvalues. The theoretical value of N0,AB|CD = 0.380 is in good agreement with

13In this case 500 slightly different linear operators L exist, each with a slightly different confidence
interval. Consequently, their average is considered here.
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the linear bound obtained by constructing the L operator based on the theoretical state,
as shown as the green distribution in Fig. 4.15. The 68.3% Hoeffding confidence values
are for BND2 CL = 0.031 and for BND1 on average CL = 0.086. The average value
for the bipartite negativity for states reconstructed with the here proposed method (red
distribution, MOD, NAB|CD(ρ̂MOD) = 0.405±0.016) is not far away from the theoretical
value, but though the theoretical value does not lie within one standard deviation. This
corresponds to the feature mentioned in Sec. 4.3.2. Even if the state estimator gives
fairly unbiased results for the considered subset of states, a non-linear function of the
states is not necessarily unbiased.
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Figure 4.15: The distribution of the values obtained for the bipartite negativity
(negativity of ρTAB , see Sec. 2.4.1) is shown for the reconstruction based on modification
of eigenvalues (MOD, red). This distribution is compared to the lower bounds obtained
by using the linear approximation, when expanded around different states (expansion
around theoretical state in green and around a state obtained by ρ̂MOD in blue). The

theoretically expected value of 0.380 is shown by the dashed line.

Finally, in Fig. 4.16 the distributions of the entropy are shown for the same three
evaluation methods, i.e. for the modification of the eigenvalues MOD, for the lineari-
sation around states obtained by modification of the eigenvalues BND1 as well as for
the linearisation around the theoretical state BND2. Again, BND1 uses another set of
frequency data to reconstruct a state ρ̂MOD. This state is used to construct a linear
operator, which is then applied to ρ̂LIN. Note that the last two methods only give upper
bounds onto the entropy. The average value for the entropy of the states obtained by
modification of eigenvalues is SMOD = 1.465± 0.071 and is therefore in good agreement
with the theoretical prediction of S0 = 1.503. In contrast, the mean value of the entropy
of the maximum likelihood estimates is SML = 1.236 ± 0.049 and therefore far off the
expectation. By applying the Hoeffding calculus, one finds that the entropy is with
probability of at least 68.3% larger than 1.502− 0.071 = 1.431. For BND1, one obtains
on average for the 500 used linear operators for the confidence interval according to Eq.



Chapter IV. Bias of Estimators 77

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

20

40

60

80

100

120

140

Entropy

#
 S

ta
te

s

MOD

BND1

BND2

Figure 4.16: The entropy ρ log(ρ) is computed for the inspected |GHZ4〉 state with
admixed white noise such that F0 = 80%. NS = 100 measurement repetitions per
basis setting are simulated. The theoretical value of 1.503 (dashed line) lies within
the error bars of all three presented distributions. Again, the red distribution shows
the entropy for the reconstructed state according to MOD, while the blue distribution,
which mostly overlaps with the red distribution, delivers only upper bounds to the
entropy. The operators BND1 are expanded around the states ρ̂MOD. In contrast, the

green distribution BND2 corresponds to the usage of the theoretical L operator.

4.43 a value of CL = 0.080. Therefore, one learns from BND1 that the true value is on
average with 68.3% probability larger than 1.434− 0.080 = 1.354.

Tab. 4.3 lists the values obtained for the considered four qubit Greenberger-Horne-
Zeilinger with admixed white noise for different functions and different quantum state
estimators or respectively approximations to the quantities. Note that the results for a
direct evaluation with ρ̂LIN are far off for the non-linear measures and give meaningless
values. The maximum value for the Fisher information of Jz achievable for a four qubit
state is 16, while the linear inversion LIN gives 16.500± 48.347. Furthermore, the huge
standard deviation of above 48 emphasises the absurdity of the result. Note that for
the fidelity, the Fisher information, the entropy and the purity the values obtained by
modifying the eigenvalues (MOD) as explained above leads to results where the theo-
retical predictions are well within the error bars. In the case of the bipartite negativity,
which is used as an entanglement measure, the obtained value 0.405±0.016 is above the
expected value of 0.380.

Consequently, for the exemplarily studied state, the proposed method gives results gen-
erally in good agreement with the theoretical predictions or the linearly approximated
value, respectively. Nevertheless, this estimator cannot give unbiased results for each
and every quantum state and all non-linear functions, which was already claimed in the
proposition in Sec. 4.3.2. On the other hand, if applicable, this quantum state estimator
gives the chance to evaluate not only non-linear convex and concave functions. Indeed,
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Fidelity Fisher info. Entropy Negativity Purity

THEO 0.800 12.174 1.503 0.380 0.643
LIN 0.799± 0.012 16.500± 48.347 0.869± 0.135 0.615± 0.024 0.716± 0.020
MOD 0.799± 0.012 12.200± 0.226 1.465± 0.071 0.405± 0.016 0.653± 0.019
ML 0.788± 0.010 12.014± 0.444 1.236± 0.049 0.413± 0.011 0.636± 0.015
FLS 0.749± 0.010 11.287± 0.452 1.430± 0.048 0.388± 0.011 0.579± 0.014

BND1 0.799± 0.012 12.106± 0.693 1.434± 0.110 0.346± 0.028 0.631± 0.019
BND2 0.799± 0.012 12.149± 0.695 1.502± 0.027 0.379± 0.012 0.642± 0.019

Table 4.3: Overview of different methods to evaluate functions of the state. The
theoretical values THEO are compared to the values obtained by reconstructing the
state by means of the modification of eigenvalues (MOD), the maximum likelihood
approach (ML) and the free least-squares fitting (FLS ). The direct evaluation with
the possibly unphysical matrix is shown in the row of LIN, while the lower and up-
per bounds are given by BND1 and BND2, respectively. BND1 is obtained by con-
structing the linear operator with the help of the reconstructed state ρ̂MOD, while
BND2 uses ρtheo for finding L. The values given for the bounds are the mean
and the standard deviation for the 500 states. The fidelity is calculated with re-
spect to the pure |GHZ4〉 state. The considered Fisher information is based on the

Jz = 1
2

(
σz ⊗ σ⊗3

0 + σ0 ⊗ σz ⊗ σ⊗2
0 + σ⊗2

0 ⊗ σz ⊗ σ0 + σ⊗3
0 ⊗ σz

)
operator [66].

the further requirement to the function to be convex or concave can be dropped if the
eigenvalue modification is applied. Nevertheless, please be aware of the non-generality
of this estimator and therefore the necessity of additional assumptions.

4.6.7 Non-generality of this method

As argued in Sec. 4.3.1, general quantum state estimators delivering always physical
and unbiased results are not possible. Therefore, these strict constraints (physicality
and unbiasedness) are relaxed. The here presented estimator is not able to deliver al-
ways physical density operators and can in some cases be also biased. Consider for
example a pure state that is measured with finite statistics. Theoretically, one would
expect all but one eigenvalues to vanish and the one left-over eigenvalue to be unity.
In contrast, finite numbers of counts can also cause one large eigenvalue to be above
unity, while the average of all other eigenvalues is below zero. Applying the quantum
state estimator ρ̂MOD in the used variant does not lead to a physical state in this case14.
Consequently, too pure states with low statistics are problematic. Nevertheless, the
spectral distribution of the reconstructed state clearly reveals that the estimation did
not succeed.
There are two possible ways to fail. Either the reported state does not fulfil the phys-
icality constraint of ρ̂MOD ≥ 0 or the estimates are not unbiased. While the first case
was already discussed, the latter one can occur if the contribution of the state, one is
interested in, is very low and the amount of admixed white noise is large. If the state
ρ = p|GHZ4〉〈GHZ4|+ (1− p)ρWN is used with p = 0.04 yielding F0 = 0.1, the eigenval-
ues of ρ are λ1 = · · · = λ15 = 0.06 and λ16 = 0.10. The statistical scatter easily causes
the eigenvalue λ16 to be within the interval of modification, leading to a result, where
all eigenvalues are averaged over, such that λ1 = · · · = λ16 = 1/24. In this case, the

14Recall that the adaptive estimator mentioned in Sec. 4.6.3 would deliver a physical result - the
maximally mixed state. Nevertheless, the result may be far from the theoretical state in this case.
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estimator consequently delivers the maximally mixed state instead of being unbiased.
The information (λ16) cannot be distinguished from the noise (λ1 to λ15), leading to a
loss of information. The same problem might occur if a state with one large contribution
and a few minor contributions is considered. If the estimator is not engineered for this
case by choosing for example a proper value for p, the information contained in these
low contributions can be lost. One example for such a situation will be discussed later
on when testing the estimator with an experimental state (Sec. 4.6.8).

Certificate for estimator

The evaluated quantities of the quantum states estimated by modifying the eigenvalues
is in good agreement with the theoretical predictions. Nevertheless, it was argued that
this method cannot give good results for all quantum states. For that purpose, one
is interested in a certificate expressing the quality of the quantum state estimation.
It is still a leftover question if such a certificate can be constructed to validate the
resulting state after modifying the eigenvalues. Different approaches are conceivable.
One could evaluate the quality of the state estimation for example by the sum of the
squared changes of the eigenvalues to determine the influence of MOD. This value should
consider the number of qubits and the statistics such that large modifications for states
with good statistics are ranked as being more disputable than large modifications of
states with low statistics. For a start, only states are considered that are reliably able
to be modified like the states belonging to the mentioned noise model of Eq. 4.44.

4.6.8 Experimental verification

Finally, the method of modifying eigenvalues to obtain a supposable physical density
operator is tested by using an experimental state. In Sec. 3, the no correlation state

was analysed. For preparation, a Dicke state |D(2)
4 〉 was created and measured, which will

now be used to test the quantum state estimator ρ̂MOD. Tab. 4.4 shows the eigenvalues
of the 4 qubit Dicke state with 2 excitations and higher order noise, which was already
presented in Sec. 3.4.2. The eigenvalues LIN are obtained from the directly linearly
inverted state such that also negative eigenvalues occur. Without further assumptions
besides the general noise model of Eq. 4.44, the eigenvalues MOD are estimated by the
here proposed estimator. One averages over all low eigenvalues such that the higher
order noise, which is contained in the eigenvalues λ14 and λ15, is lost. By assuming that
the admixture of white noise is only very small, the eigenvalues of MODb are obtained.
Eigenvalues λ1 up to λ13 are averaged to be around 1.6 ·10−5, while λ14 and λ15 preserve
the higher order noise present in the state. In all cases, λ16 is not changed, whereby the

fidelity of the estimated state with respect to the theoretical |D(2)
4 〉 state is expected to

be reported unbiasedly.

Consequently, the most naive ansatz of averaging over all small eigenvalues gives already
a good result. Nonetheless, a slight modification of the estimator still improves the
results. Using the further assumption that the contribution of the admixed white noise
is very low one can finally obtain a physical state with great accordance to the measured
state. The fidelities achieved by the different state estimators with respect to the target
state and states corresponding to higher order noise are listed in Tab. 4.5. The best
results for the fidelities are indeed obtained when using the MODb estimator with further
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Eigenvalue LIN MOD MODb ML FLS

λ1 −0.0232 0.0049 0.0000 0.0000 0.0000
λ2 −0.0161 0.0049 0.0000 0.0000 0.0000
λ3 −0.0138 0.0049 0.0000 0.0000 0.0000
λ4 −0.0106 0.0049 0.0000 0.0000 0.0000
λ5 −0.0069 0.0049 0.0000 0.0000 0.0000
λ6 −0.0036 0.0049 0.0000 0.0000 0.0000
λ7 0.0018 0.0049 0.0000 0.0000 0.0000
λ8 0.0047 0.0049 0.0000 0.0000 0.0000
λ9 0.0078 0.0049 0.0000 0.0010 0.0012
λ10 0.0096 0.0049 0.0000 0.0023 0.0028
λ11 0.0119 0.0049 0.0000 0.0063 0.0065
λ12 0.0183 0.0049 0.0000 0.0097 0.0098
λ13 0.0206 0.0049 0.0000 0.0124 0.0129
λ14 0.0275 0.0049 0.0275 0.0153 0.0155
λ15 0.0460 0.0049 0.0460 0.0296 0.0303
λ16 0.9261 0.9261 0.9261 0.9235 0.9210

Table 4.4: The eigenvalues of the measured state of Sec. 3.4.2 are compared for
different state estimators. LIN labels the eigenvalues of the state directly obtained by
interpreting the measured frequencies as probabilities, while MOD and MODb label
the quantum state estimators based on modification of the eigenvalues. MOD averages
over all eigenvalues λi ∈ [λ1; 1/16 − λ1]. MODb is constructed by being aware of
coloured noise. Therefore, MODb averages only eigenvalues with λi ∈ [λ1; p/16 − λ1]
with p = 0.02, assuming only 2% of white noise in the theoretical state. All choices
of p ∈ [0; 0.056] would reproduce these eigenvalues, while larger values for p are also

considering λ14 and probably λ15 to average over.

Fidelity target state LIN MOD MODb ML FLS

|D(0)
4 〉 0.0001 0.0049 0.0005 0.0004 0.0005

|D(1)
4 〉 0.0334 0.0087 0.0343 0.0263 0.0268

|D(2)
4 〉 0.9195 0.9194 0.9195 0.9173 0.9148

|D(3)
4 〉 0.0102 0.0070 0.0114 0.0112 0.0114

|D(4)
4 〉 −0.0016 0.0049 0.0011 0.0004 0.0005

Table 4.5: Comparison of the fidelities of the reconstructed state with respect to the
Dicke states with 4 qubits. The method MODb gives the best values for the fidelity with

respect to the desired target state D
(2)
4 as well as with respect to the higher orders D

(1)
4

and D
(3)
4 . The negative fidelity F (ρ̂LIN, |D(4)

4 〉) = −0.0016 is due to the unphysicality
of ρ̂LIN.
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Fisher info. (Jz) Entropy Negativity Purity

LIN 0.9280 0.4622 + 0.3365i 0.7590 0.8628
MOD 0.0244 0.6690 0.7470 0.8580
MODb 0.1916 0.4555 0.7429 0.8605
ML 0.1416 0.5679 0.7453 0.8542
FLS 0.1492 0.5842 0.7425 0.8498

BNDML ≥ 0.2002 ≤ 0.4933 ≥ 0.7202 ≥ 0.8433
BNDMODb ≥ 0.0217 ≤ 0.5392 ≥ 0.7289 ≥ 0.8414

BNDML ≥68.3% −0.0641 ≤68.3% 0.5364 ≥68.3% 0.6950 ≥68.3% 0.8224
BNDMODb ≥68.3% 0.0148 ≤68.3% 0.5839 ≥68.3% 0.7118 ≥68.3% 0.8202

Table 4.6: Comparison of non-linear measures for the experimentally prepared state
for different state reconstruction methods. Here, not only the boundary values BND for
the linear approximation are listed, but also the weakening effect of the inequality due
to the Hoeffding calculus is shown. All error bounds are computed for 68.3% confidence
level. The linear operator L of BNDML is constructed by using the maximum likelihood
fit, while BNDMODb

employs the reconstruction of MODb. The measured data was
probabilistically splitted up into two new sets of data. One of those data sets was
employed via a state reconstruction (ML or MODb) to construct the linear operator
L while the other set was used with linear inversion to find the lower/upper bound
by tr(Lρ̂LIN). NS = 920 is used for evaluating CL for the Hoeffding bound (see Eq.
4.43). Please note that the state ρ̂LIN is not physical. Therefore, meaningless results
are expected when it is directly used for function evaluation, cf. for example the Fisher

information or the entropy.

assumptions. Tab. 4.6 lists the values for non-linear functions obtained by different
methods for state estimation. While the negativity and the purity are similar to each
other for the four methods delivering a physical state, the Fisher information and the
entropy differ more from each other. Strikingly, the simple linear inversion LIN delivers a
value for the Fisher information that is far off the other values. Furthermore, its entropy
is a complex number away from any physical interpretation. The values given for the
one-sided bounds, i.e. obtained by means of the linear approximation, are weakened
when using the Hoeffding calculus. Therefore, for instance the value for the entropy is
bounded by ≤ 0.4933 when using BNDML. If the 68.3% confidence interval is calculated
according to Hoeffding, this bound is given by ≤68.3% 0.5364. Tab. 4.6 illustrates that
the maximum likelihood and the free least-squares results are not in agreement with
the directly obtained one-sided bounds for the Fisher information and the entropy when
using the maximum likelihood state for the construction of the linear operator. After
weakening the bounds by using the 68.3% confidence interval by means of the Hoeffding
calculus, maximum likelihood and free least-squares fulfil the inequalities for the Fisher
information. In contrast, the eigenvalue modification is in agreement with the bounds
when using the state of ρ̂MODg for constructing the operator. Please note that the
boundaries are obtained by using two sets of data. The inital set of about 1840 counts
per basis setting is probabilistically splitted into two sets. The first set with about 920
counts per basis setting is used to construct a linear operator by means of a maximum
likelihood fit or the modification of eigenvalues. Afterwards, the second set with also
about 920 counts per basis setting leads to a linearly inverted state ρ̂LIN that delivers
the bound by calculating tr(Lρ̂LIN). This ensures that the obtained measurement data
are not used twice.
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Thus, the quantum state estimator using modified eigenvalues gives a state whose fideli-

ties with respect to the Dicke state |D(2)
4 〉 and the contributions of higher orders are in

accordance with the linearly evaluated fidelities. Furthermore, non-linear measures are
reported in agreement with the bounds obtained by the presented linear approximation.
Nevertheless, note that the experimental data offers rather good statistics.

4.7 Conclusion

In this chapter, two methods were introduced that allow estimating non-linear functions
of states. Using the measured data to construct a density operator may fail in many
cases since the obtained matrix does not fulfil the physicality constraint of ρ̂LIN ≥ 0.
The result lacks a physical meaning. Eigenvalues that - for a physical density operator
- can be interpreted as probabilities are not longer bounded between zero and unity if
the result is not positive semi-definite. Evaluating measures like the entropy where the
eigenvalues of the state are used consequently leads to meaningless conclusions.

Here, it was shown that procedures based on fitting the unphysical result to the state
ρ̂fit with ρ̂fit ≥ 0, in best agreement with the obtained tomographic data, leads to biased
statements. Instead, linear functions like the fidelity with respect to a pure state, can be
evaluated directly on the possibly unphysical result. Furthermore, this chapter explains
and illustrates by examples how non-linear functions can be linearly approximated if
they are either convex or concave. This procedure works for any type of state, but is
intrinsically restricted to convex and concave functions. Thereby, one is able to find
lower or upper bounds for the quantity of interest even if the reconstructed state does
not represent a physical state.

Since this method is only applicable for convex or concave functions, one is still interested
in a reliable quantum state estimator. One method for a particularly chosen noise model
was proposed. This procedure, based on modification of the eigenvalues, is not a general
method, but provides good results for the considered measures. The quantum states
reconstructed by modifying the eigenvalues of the unphysical result allow to obtain
bounds on the evaluated functions. Here, possibly present systematical deviations are in
most cases negligible compared to any statistical scatter. This easy state reconstruction
method is a promising tool for estimating non-convex and non-concave functions of
quantum states where the linear approximation cannot be used. Nevertheless, it is
crucial to keep in mind that even an unbiased quantum state estimator may give biased
results for non-linear functions.



Chapter 5

Conclusion

This thesis is composed of two mostly mutually independent topics. Chapter 3 presents
novel results on the observation of genuine n-partite entanglement even if no n-partite
correlations are present. Naively, one would expect that a genuinely entangled quantum
state causes inevitably correlations between all involved parties. In contrast, this study
gives a counterexample of a state with genuine tripartite entanglement, but without any
correlations between the outcomes of the three parties. This firstly considered quantum
state is experimentally prepared and analysed to prove the mentioned phenomenon. To
show that this effect is not special for the very particular chosen state, a whole class of
states is theoretically analysed afterwards. Nevertheless, a generalisation of this feature
to states with an even number of qubits is still missing. Probably, it is possible to find
a state with even number of qubits that is the incoherent sum of more than two pure
states and is genuinely entangled as well even if it does not show full correlations. If it
is already sufficient to mix two states for even numbers of qubits to obtain a state with
these properties, cannot be answered so far.

Furthermore, this thesis deals in chapter 4 with the reconstruction of quantum states by
means of measured data. The experimental data delivers mostly an unphysical result if
used straightforward to build up a quantum state. In this case, a multitude of functions
cannot be evaluated in a meaningful way. Therefore, it is common practise to apply
fitting methods that deliver the (physical) quantum state that is in best agreement with
the measured data. These maximum likelihood and free least-squares procedures are
studied in detail and found to give biased results. Furthermore, the commonly used
methods to report error bars are highly questionable since they do not sample error in-
formation of the underlying quantum state, but instead are based on an already biased
quantum state. Consequently, another method is presented that gives linear approxi-
mations of the considered functions. Thereby, unbiased information about non-linear
measures can be extracted. Furthermore, confidence intervals can be determined easily
and without any further assumptions. Unfortunately, this procedure gives only one-sided
bounds and is not always applicable since the linearisation is only possible for convex
or concave functions. The linear approximation is based on a physical quantum state.
Although all choices for this state to construct a linear approximation are valid, it is
still an open question how the best approximation can be found.
Finally, another method to estimate a quantum state was presented that is based on
further assumptions. Exemplarily, a predefined noise model was used. The constructed
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quantum state estimator lacks the generality of the presented fitting methods, but pro-
vides promising results if the assumptions are properly chosen.



Appendix A

Additional calculations

A.1 Derivation of constraints bounding the correlations

If the density matrix is parametrised in terms of its eigenvalues and eigenstates, it is
obvious, that the eigenvalues may not be larger than one and cannot go below zero.
Instead of using its eigendecomposition, it is often helpful to describe a state ρ in terms
of correlations, i.e. one uses the correlation tensor as for example given in Eq. 2.18. The
constraint onto the eigenvalues {λi}i with λi ∈ [0, 1] for i = 1, . . . , 2n and

∑2n

i=1 λi = 1
leads to another constraint onto the correlations. Its derivation will be given in Eq.
A.1, which is just based on the fact, that the state’s purity cannot exceed the value 1.
Please note, that here all 4n correlations are taken into account, not only the 3n full
correlations.

tr
(
ρ2
)

= tr

 1

22n

3∑
µ1,...,µn=0

Tµ1...µn

n⊗
i=1

σµi

3∑
ν1,...,νn=0

Tν1...νn

n⊗
j=1

σνj


=

1

22n

3∑
µ1,...,µn=0

3∑
ν1,...,νn=0

Tµ1...µnTν1...νn tr

 n⊗
i=1

σµi

n⊗
j=1

σνj


=

1

22n

3∑
µ1,...,µn=0

3∑
ν1,...,νn=0

Tµ1...µnTν1...νnδ~µ,~ν2n

=
1

2n

3∑
µ1,...,µn=0

T 2
µ1...µn ≤ 1

⇒
3∑

µ1,...,µn=0

T 2
µ1...µn ≤ 2n.

(A.1)
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A.2 Parity function g

A.2.1 Definition

The function g(µ1, . . . , µn; i1, . . . , in) defines the signatures of the contributing number
of counts to the desired correlation as described in Eq. 2.80. Therefore, the parity
function may be defined as

g(µ1, . . . , µn; i1, . . . , in) = (−1)N(µ1,...,µn;i1,...,in), (A.2)

where N(µ1, . . . , µn; i1, . . . , in) counts, how many elements of i1, . . . , in are 1, if the
corresponding measurement direction is {x, y, z}, i.e. N(~µ,~i) =

∑n
j=1(δµj ,x + δµj ,y +

δµj ,z)ij , where ij is 0, if the chosen eigenvector belongs to the eigenvalue 1 of the matrix
σµj , and 1, if it corresponds to the eigenvalue −1 of the Pauli matrix of the jth qubit. If
instead only full basis settings are considered, the arguments µ1, . . . , µn can be skipped.
Then, Eq. A.2 simplifies to

g(i1, . . . , in) = (−1)
∑
j ij . (A.3)

A.2.2 Calculating partial derivatives

In Sec. 4.6.1 one is interested in the partial derivatives of the correlations and the
respective numbers of counts. It holds

∂TS

∂cSj
=
∂
∑
i g(i1,...,in)cSi∑

i c
S
i

∂c̃Sj

=
g(j1, . . . , jn)

∑
i c
S
i −

∑
i g(i1, . . . , in)cSi

(
∑

i c
S
i )2

= −2

∑
i;odd c

S
i δ1,g(j1,...,jn) +

∑
i;even c

S
i δ−1,g(j1,...,jn)(∑

i c
S
i

)2 ,

(A.4)

where even and odd denote the parity of the outcomes to sum over. Therefore, if one is for
example interested in ∂T11/∂c

11
00, evaluating the g function to g(j1, . . . , jn) = g(0, 0) = 1

leads to

∂T11/∂c
11
00 = −2

∑
i;odd c

11
i(∑

i c
11
i

)2 = −2
c11

01 + c11
10(∑

i c
11
i

)2 . (A.5)

A.3 Predictability

The predictability (Sec. 3.2) will be further illuminated by the state considered in
chapter 3: ρNC,3 = 1

8(|001〉〈001| + |110〉〈110| + . . . ). Since writing all terms would be
lengthy and of no additional information, here only the excerpt of the matrix elements
is given that are relevant for the following example. Consider now first the case of full
knowledge, i.e. the third participant of an experiment knows the measurement outcome
of both the other parties, who are responsible for qubits 1 and 2, respectively. Assume,
the first two measurements were resulting in 0. Already from this information the third
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party can directly infer the results of his measurement, since Pr|ψ〉1=|0〉,|ψ〉2=|0〉(|ψ〉3 =
|0〉) ∝ |〈000|ρNC,3|000〉|2 = 0 and Pr|ψ〉1=|0〉,|ψ〉2=|0〉(|ψ〉3 = |1〉) ∝ |〈001|ρNC,3|001〉|2 = α.
The proportionality is given instead of equality, since the conditional probability has to
be normalised by marginalising over all cases, that are in agreement with the condition,
such that PrB(A) ≡ Pr(A|B) = Pr(A,B)/Pr(B). Here, this causes a renormalisation
with α. Thus, the third party knows the measurement outcome of |ψ〉3 to be |1〉 with
probability α

α = 1.
Compare now this case of full knowledge with the case of knowing the correlation between
two qubits only to infer the outcome of the last one. Then, for the case of correlated
qubits 1 and 2,

Pr|ψ〉1=|ψ〉2(|ψ〉3 = |0〉) ∝ |〈000|ρNC,3|000〉|2︸ ︷︷ ︸
=0

+|〈110|ρNC,3|110〉|2 = α, (A.6)

while

Pr|ψ〉1=|ψ〉2(|ψ〉3 = |1〉) ∝ |〈001|ρNC,3|001〉|2 + |〈111|ρNC,3|111〉|2︸ ︷︷ ︸
=0

= α. (A.7)

Therefore, knowing the first two qubits to have same outcomes, but not knowing, what
concrete outcomes they have, does not yield any knowledge about the third qubit, while
knowing the individual outcomes can allow predicting the third qubit’s results.

A.4 Tracing out one qubit of a Dicke state

The state ρNC,3 = 1
2(|W3〉〈W3|+|W3〉〈W3|) that is given in Sec. 3.4.1 has to be prepared

experimentally. Since preparing the states |W3〉 and |W3〉 and mix them afterwards can

be cumbersome, a more straightforward way is to prepare a Dicke state |D(2)
4 〉 and trace

out one qubit. For completeness, it will be shown in Eq. A.8 that tr4(|D(2)
4 〉〈D

(2)
4 |) =

ρNC,3 holds.

tr4

(
|D(2)

4 〉〈D
(2)
4 |
)

=
1

6

(
tr4 (|0011〉〈0011|) + tr4 (|0011〉〈0101|)

+ tr4 (|0011〉〈0110|) + · · ·+ tr4 (|1100〉〈1100|)
)

=
1

6
(|001〉〈001|+ |001〉〈010|+ · · ·+ |110〉〈110|)

=
1

2

[1

3
(|001〉+ |010〉+ |100〉)(〈001|+ 〈010|+ 〈100|)

+
1

3
(|110〉+ |101〉+ |011〉)(〈110|+ 〈101|+ 〈011|)

]
=

1

2
(|W3〉〈W3|+ |W3〉〈W3|)

=ρNC,3.

(A.8)
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A.5 Optimisation over bi-separable states

This section derives how the genuine tripartite entanglement is detected, as it is used in
Sec. 3.3.2. The derivation is based on ideas of Tomasz Paterek and will be explained in
[13]. Recall the entanglement criterion as used in Sec. 3.4.5 where

max
T̂bi−prod

(
T̂, T̂ bi−prod

)
G
<
(
T̂, T̂

)
G

(A.9)

holds if the state ρ with the correlation tensor T̂ is genuinely n-partite entangled. Define

the left-hand side as L = maxT̂bi−prod

(
T̂, T̂ bi−prod

)
G

and the right-hand side as R =(
T̂, T̂

)
G

. Now, the derivation of L is needed to show the genuine tripartite entanglement

of the mixture of the generalised |Wg
3〉 state and its antistate, as described in Sec. 3.3.2.

The used metric is chosen such that GΠ(XX0) = GΠ(Y Y 0) = GΠ(ZZ0) = 1 holds for Π
denoting all permutations. The choice of the metric significantly differs from the usual
choice Gµ1,...,µn,ν1,...,νn = δµ1,ν1 · · · δµn,νn (see Sec. 2.4.1). This metric is motivated by
the fact that ρNC,3 has no full correlations but necessarily non-full correlations.

The value for the right-hand side of Eq. A.9 is found to be R = 3 because

R =
(
T̂, T̂

)
G

=T 2
XX0 + T 2

Y Y 0 + T 2
X0X + T 2

Y 0Y + T 2
0XX + T 2

0Y Y + T 2
ZZ0 + T 2

Z0Z + T 2
0ZZ

=2 (sin(2β) sin(α))2 + 2 (sin(2β) cos(α))2 + 2
(
sin2(β) sin(2α)

)2
+
(
cos(2α) sin2(β)− cos2(β)

)2
+
(
− cos(2α) sin2(β)− cos2(β)

)2
+ cos2(2β)

=3.

(A.10)

The calculation of the value for the left-hand side L of Eq. A.9 is more laborious thus
it is sketched, only. Use without loss of generality the bi-product state (cos(θ)|00〉 +
sin(θ)|11〉) ⊗ |c〉 is chosen with the local Bloch vectors [50] ~a, ~b and ~c. Therefore, L is
obtained to be

L =TXX0

(
T bi−prod
XX0 + T bi−prod

Y Y 0

)
+ TZZ0T

bi−prod
ZZ0 + TX0X(aXcX + aY cY )

+ TZ0ZaZcZ + T0XX(bXcX + bY cY ) + T0ZZbZcZ .

(A.11)

With further simplifications [13] Eq. A.11 leads to a set of three times three inequalities:

L(i),1 ≤ |TXX0|

+
√

(|TXX0|+ |TZZ0|)2 + (max(|TX0X |+ |TZ0Z |) + max(|T0XX |+ |T0ZZ |))2

L(ii),1 ≤ |TZZ0|+
√

4T 2
XX0 + (max(|TX0X |+ |TZ0Z |) + max(|T0XX |+ |T0ZZ |))2

L(iii),1 ≤ |TXX0|+ max(|TX0X |+ |TZ0Z |) + max(|T0XX |+ |T0ZZ |)

L(i),2 and L(i),3 are obtained from L(i),1 by cyclic permutation of the qubits. Analogously,
the other four boundary values can be derived from L(ii),1 and L(iii),1, respectively. Now,
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the value of L cannot exceed the maximal value of all nine boundary values, i.e.

L ≤ max{L(i),1;L(ii),1;L(iii),1;L(i),2;L(ii),2;L(iii),2;L(i),3;L(ii),3;L(iii),3}, (A.12)

This situation is depicted in Fig. 3.1 where the maximally obtained value for the bound
of L is depicted for possible choice of α and β in the state parametrisation of |Wg

3〉 (Eq.
3.8). As an example, consider the no correlation state ρNC,3. The limit value for L is
obtained by Eq. A.12 to be L ≤ 7/3 ≈ 2.33 (see Fig. 3.1), which is equivalent to the value
obtained for the bi-separable state ρbi−prod = (cos (θ) |PP 〉 − sin (θ) |MM〉) ⊗ |P 〉 with

|P 〉 =
√

1
2 (|0〉+ |1〉) and θ = 1

2 tan−1
(

3
4

)
in Sec. 3.4.5. Again, for the full derivation,

please see [13].

A.6 Hoeffding error calculation

This section demonstrates how to linearly approximate a quantity and calculate the con-
fidence interval using the Hoeffding calculus. Consider therefore the bipartite negativity
of a quantum state and construct the linear operator around the |φ+〉 state. To do so,
calculate the partial transpose of interest of the respective state

ρTA = (|φ+〉〈φ+|)TA =
1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (A.13)

Find the eigendecomposition of the state ρTA :

−1

2︸︷︷︸
λ1


0

−1/
√

2

1/
√

2
0


︸ ︷︷ ︸

|ψ1〉

;
1

2︸︷︷︸
λ2


0

1/
√

2

1/
√

2
0


︸ ︷︷ ︸
|ψ2〉

;
1

2︸︷︷︸
λ3


1
0
0
0


︸ ︷︷ ︸
|ψ3〉

;
1

2︸︷︷︸
λ4


0
0
0
1


︸ ︷︷ ︸
|ψ4〉

. (A.14)

The projector onto the negative eigenspace has now to be build. Therefore, the eigen-
vector corresponding to the eigenvalue −1/2 is used for the linear operator L:

L =


0

−1/
√

2

1/
√

2
0

(0 −1/
√

2 1/
√

2 0
)

=
1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 . (A.15)

This projector onto ρTA ’s negative eigenspace can now be decomposed into MS
i defined

for example in Eq. 2.78. Doing so, one finds

L =
1

36

(
− 9MXX

00 + 10MXX
01 + 10MXX

10 − 9MXX
11

− 9MY Y
00 + 10MY Y

01 + 10MY Y
10 − 9MY Y

11

− 9MZZ
00 + 10MZZ

01 + 10MZZ
10 − 9MZZ

11

+
∑
S′

MS′
00 +MS′

01 +MS′
10 +MS′

11

) (A.16)
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where the occurring summation is running over S′ ∈ {XY,XZ, Y X, Y Z,ZX,ZY }.
Comparing Eq. A.16 with L =

∑
i,S l

S
i M

S
i , one finds the coefficients lSi . Finally, in Ho-

effdings inequality as given in Eq. 4.43 one has to compute h2 =
∑

S(maxi l
S
i −mini l

S
i )2.

For this example, it holds

h2 =
∑
S

(
max
i
lSi −min

i
lSi

)2

=

 1

36
(10− (−9))︸ ︷︷ ︸

XX

+
1

36
(10− (−9))︸ ︷︷ ︸

Y Y

+
1

36
(10− (−9))︸ ︷︷ ︸

ZZ

+
1

36
(0− 0)︸ ︷︷ ︸

XY,...,ZY


2

=

(
3 · 19

36

)2

≈ 2.51.

(A.17)

According to CL =
√
−h2 ln(1−γ)

2NS
(Eq. 4.43) for NS = 100 one obtains for the γ = 0.683

confidence region a value of CL ≈ 0.120.

A.7 Variance of matrix elements

The maximally achievable standard deviation of antidiagonal terms of density matrices
will be derived here. The matrix element ρi,2n−i is composed of the respective numbers
of counts when measuring {σx ⊗ · · · ⊗ σx ⊗ σx, σx ⊗ · · · ⊗ σx ⊗ σy, σx ⊗ · · · ⊗ σy ⊗ σx,
. . . , σy ⊗ · · · ⊗ σy ⊗ σy}. It holds

∆ρi,2n−i =

√√√√√√
∑
i,S

(
∂ρi,2n−i

∂cSi

)2 (
∆cSi

)2
︸ ︷︷ ︸

2n·2nterms

. (A.18)

Assuming white noise, i.e. cSi = NS/2
n ∀i, S and same statistics NS for each setting S

Eq. A.18 can be bounded by above with

∆ρi,2n−i ≤

√
2n2n

(
∂ρi,2n−i

∂cS
′

i′

)2 (
∆cS

′
i′
)2

(A.19)

where cS
′

i′ denotes any cSi and where S′ denotes a setting corresponding to a tensorial
product of σx and σy. Using the partial derivative from Sec. A.2.2, one finds

∆ρi,2n−i ≤ 2n

√(
∆cS

′
i′
)2

4nN2
S

=

√
2n

NS
. (A.20)

This justifies a 1
NS

decreasing behaviour of standard deviation of the matrix elements and
furthermore also legitimates the assumption that the radius of the spectral probability
density function decreases with 1

NS
even if Eq. A.20 is only a rough estimate.
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Convex optimisation

The convex optimisation that is used to execute the maximum likelihood and free least-
squares fit (see Sec. 4.2.3) is accomplished by a self-coded program written with C++.
Here, some basic principles of the implementation will be given as well as some ideas for
further modifications will be presented.

B.1 Used Implementation

In the first step, some initialisations have to be done. Therefore, the frequencies are
loaded from ASCII coded files. Afterwards, the corresponding projectors are build up.
Thus, the program has now a list of 6n frequencies (fSi with 2n different outcomes i in
3n basis settings) that are obtained from measured data. Each frequency is furthermore
associated to a projector, that identifies the measurement outcome it belongs to.
The used parameterisation of the density matrix ρ is chosen according to Eq. 2.18, such
that the operator basis {Si}i consists of all 4n different outer products with

Si =
n⊗
j=1

σij , (B.1)

where ij denotes the measurement direction of the jth qubit with ij ∈ {0, x, y, z}. Since
a Pauli matrix has only two entries different than zero, the tensor product of n Pauli
matrices has only 1

2n non-zero entries. Using this and the fact, that only ±1 and ±i are
possible values for the entries, a lot of memory can be saved to lower the requirements
of the algorithm.
To compute the gradients and Hessian matrices according to Eqs. 4.16 and 4.17 for
the maximum likelihood estimation (for FLS analogously) the term tr(SiMk) has to be
evaluated often. Instead of doing this each time needed, this can be done once at the
beginning. Additionally, pre-computing a lookup table to store, which entries are non-
zero, causes a further increase of the program’s speed, but costs additional memory.
The main steps of the algorithm to reconstruct the state consist of two nested loops. The
outer loop - called the p-loop - controls the size of the parameter t of the barrier term
as given in Eq. 4.11. After each of the 11 iterations t is decreased from the initial value
t0 = 1 to ti+1 → ti/10. The inner loop (m-loop) is responsible to ensure the convergence
for the current function to optimise over. Thus, t is set in the p-loop, while the nested
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m-loops converges to the respective optimum. Afterwards, t is further decreased. The
m-loop first computes the current density matrix ρ out of the current set of parameters
{xi}i. For this ρ the probabilities tr(ρ(x)Mk) are computed to compare them with the
set of measured frequencies. Furthermore, the gradient and the Hessian matrix for the
current state ρ are determined. With this knowledge, a Newton step can be performed
with [97]

∆~x = −
(
∇2f(~x)

)−1 ~∇f(~x). (B.2)

While this is still a valid approach, Eq. B.2 is based on inverting the Hessian matrix
with H = ∇2f(x) ∈ R4n×4n . Instead of computing the inverse of the Hessian matrix
H directly, the implementation makes use of the symmetry and positive definiteness of
H, such that it is decomposed into a lower triangular matrix with H = LLT . With
this Cholesky decomposition [111] the equation L~w = −~∇f(~x) is solved. With this,
~w = −L−1~∇f(~x) holds, which is used to solve LT∆~x = ~w. Therefore [97],

∆~x =
(
LT
)−1

w = −
(
LT
)−1

L−1~∇f(~x) = −H−1~∇f(~x) (B.3)

is equivalent to Eq. B.2. For further details, including the computational effort, please
see [97] and for information concerning the concrete implementation [112].
After applying the Newton step ~xi + ∆~x, the density matrix ρ = ρ(~x) is assumed to be
closer to the optimal point. Depending on the shape of the problem ~xi + ∆~x can now
be a unphysical state, while ρ(~xi) was not. To ensure, that one does not leave the space
of ρ ≥ 0, the physicality has to be checked additionally. Therefore, if ρ(~xi + ∆~x) has
negative eigenvalues, not the full Newton step is taken into account, but instead its step
size is decreased. Thus, this is done for increasing j = 0, 1, 2, . . . , until ρ(~xi + (1

2)j∆~x)

gives a physical state. Finally, the step is accepted as ~xi+1 = ~xi + 1
2

j
∆~x. This method

can be augmented by using backtracking line search methods [97] to find a good step
size and update then ~xi+1 = ~xi +α∆~x. This Newton method is employed in the m-loop
10 times at maximum. If the gradient undergoes a given threshold beforehand, the loop
can be left, since optimal point has been reached good enough.
To overcome possible numerical problems due to finite accuracy of the used variables
with double precision, final steps with quadruple precision can be executed if the gradi-
ent could not be minimised sufficiently. The quadruple precision is used up to five times
for the last value of the t parameter in the last step of the p-loop. A clearly structured
output informs the user if each iteration of the p-loop ended because either the gradient
was sufficiently small, the number of maximal iterations was exceeded or the size of the
Newton step was too small.

The current implementation of the algorithm is optimised for systems up to six qubits,
such that reconstructing six qubit quantum states takes approximately up to 6 to 8 min-
utes using a quad core CPU of type AMD Phenomtm II X4 840 clocked with 3.20 GHz
and with 8 Gb RAM running openSuSE “Asparagus” (ver. 12.1). Obviously, the speed
highly depends on the state to reconstruct.
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B.2 Other methods for optimisation

Other approaches besides the described Newton method are possible. For the Newton
step as given in Eq. B.2, one has to compute the Hessian matrix of the state ρ and finally
invert it either directly or use its Cholesky decomposition. This can be avoided by using
Quasi-Newton methods [113, 114] like the Broyden-Fletcher-Goldgarb-Shanno (BFGS)
method [115]. Instead of evaluating the Hessian matrix for each state ρ(~xi) anew, an
approximation to its inverse is computed once and afterwards only updated. A direct im-
plementation of this would cause problems each time when the t parameter is decreased
by an order of magnitude. Hence, a better approach to implement the BFGS method
could be to decrease t more often, but with less change each time. Thus, the problem
to solve does not change dramatically for each p-iteration, but is varied only slightly.
Therefore, continuously updating H−1 could be possible. The memory requirements can
be reduced by using memory optimised versions like the L-BFGS method [116].
Another possibility to avoid a Cholesky decomposition or directly inverting the Hes-
sian matrix is by using a conjugate gradient method [117]. This method shows its

x0

xmin

Figure B.1: Comparison of conjugate gradient and steepest descent methods [112].
The contour represents the function to optimise over. The algorithm may start at
x0 and is looking for xmin. While the steepest descent methods use the gradient of
the current evaluation point xi to find the next xi+1 (red curve), conjugate gradient
methods (blue) find the next xi+1 by using a direction composed by the gradients

evaluated at x0, x1, . . . , xi.

advantages best when compared with a steepest descent method as shown in Fig. B.1.
Steepest descent methods cause a continuous change of the direction of descent due to
perpetual alteration of the gradient. This can lead to a bouncing behaviour of the op-
timisation. The conjugate gradient methods compute the direction for the next step in
dependence of the previous direction to avoid this jiggling. While different versions of
conjugate gradient methods like the Fletcher-Reeves (FR), the Polak-Ribière (PR) and
the Hesteness-Stiefel (HS) exist, a general implementation can be found in [112]. Since
conjugate gradient methods do not need any second derivatives, these methods may be
a way to prepare the quantum state reconstruction algorithm to handle states with more
than six qubits as well.
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Publication list

[50]
Wies law Laskowski, Christian Schwemmer, Daniel Richart, Lukas Knips, Tomasz Pa-
terek and Harald Weinfurter
Optimized state independent entanglement detection based on geometrical
threshold criterion
Physical Review A
Status: accepted

[13]
Π(Wies law Laskowski, Tomasz Paterek, Christian Schwemmer, Lukas Knips and Harald
Weinfurter), where Π denotes a permutation
t.b.a.
Status: in preparation

[23]
Christian Schwemmer, Lukas Knips, Daniel Richart and Harald Weinfurter; Tobias Mo-
roder, Matthias Kleinmann and Otfried Gühne
Systematic errors in current quantum state tomography tools
Status: in preparation
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[81] Harald Weinfurter and Marek Żukowski. Four-photon entanglement from down-
conversion. Phys. Rev. A, 64:010102, Jun 2001. doi: 10.1103/PhysRevA.64.010102.
URL http://link.aps.org/doi/10.1103/PhysRevA.64.010102.

[82] T.W. Hansch and B. Couillaud. Laser frequency stabilization by polar-
ization spectroscopy of a reflecting reference cavity. Optics Communica-
tions, 35(3):441 – 444, 1980. ISSN 0030-4018. doi: http://dx.doi.org/10.
1016/0030-4018(80)90069-3. URL http://www.sciencedirect.com/science/

article/pii/0030401880900693.

[83] Th Udem, R. Holzwarth, and T. W. Hansch. Optical frequency metrology. Nature,
416(6877):233–237, March 2002. ISSN 0028-0836. doi: 10.1038/416233a. URL
http://dx.doi.org/10.1038/416233a.
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