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1 Introduction

The combination of game theory and quantum information led to the new field of
quantum games. The classical theory of games, which is a well established disci-
pline of applied mathematics, and quantum communication are both concerned with
information and how information is processed and utilized.

Game theory analyzes situations of interactive decision making and provides
models of conflict and cooperation [1]. It has numerous applications, most im-
portantly among many others in economics, social sciences, politics and biology.
However, in every game the players have to inform the other players or the game’s
arbiter about the decisions they take for the game to evolve. In fact the players
need to communicate information.

Quantum mechanical systems offer new possibilities for the communication and
processing of information. The basis for the theory of quantum information and
computation [2] will be shortly reviewed in section 2.1. Accordingly, one can provide
the players of a game with quantum mechanical systems as carriers of information
they need to communicate. As this extends the possibilities for communication,
novel strategies become possible in quantum games.

It turns out that entanglement and linear combinations of the classical strategies
can enable the players to reach higher benefits in the quantum mechanical version
of a game than classically achievable (s. section 2.2). Yet, quantum communication
problems also can be viewed in the light of game theory. Just as new solutions to
classically unsolvable games can be found in quantum game theory, it is the aim
of some quantum communication protocols to provide a quantum solution to an
otherwise unsolvable classical problem. It is thus possible to rephrase problems in
quantum communication or computation as games.

Consider for example eavesdropping in quantum cryptography: To analyse how
vulnerable a quantum cryptography protocol is, one can try to find the optimal
quantum strategy for an eavesdropper, trying to obtain as much information as pos-
sible in a given setup, playing against Alice and Bob, who are trying to communicate
securely. Likewise, searching a database for a particular entry can be formulated as
game between two players, both trying to find this entry first. The optimal (quan-
tum) strategy in this game then corresponds to an optimal (quantum) algorithm to
solve the problem.
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1 Introduction

As a contribution to the new field of quantum games I will show in chapter 3
how the quantum version of a well known classical game, the prisoner’s dilemma,
can be implemented. The dilemma of the classical game is that it is not possible to
maximize the payoff of all rational players with optimal single player strategies. In
the quantum version of the game, however, the players are supplied with one sub-
system of an entangled state each. If they may perform any quantum mechanically
allowed operation to encode their choice of strategy on their respective subsystem
before sending it to an arbiter determining each player’s benefit, the dilemma can
be resolved. It is the goal of this work to realize the idea in practice.

In the experimental part, I will present the first optical realization of this
quantum game using polarization-time-entangled photon pairs on which arbitrary
(quantum-) strategies can be performed. The entangled photon pairs are generated
with high temporal definition in a parametric down-conversion process, explained in
section 2.3. It will be shown how a compact and highly efficient entangled photon
pair source is set up to generate the initial state of the game (section 3.1). The
need for such highly efficient sources of entangled photons grew with the interest
in fundamental tests of quantum mechanics (tests of Bell’s inequality) and the re-
alization of quantum computation and communication schemes, for example dense
coding and teleportation.

To experimentally demonstrate the efficiency of quantum strategies, two players
can perform single-qubit operations corresponding to the angular settings of a com-
bination of λ/2- and λ/4-waveplates, as discussed in section 3.2. To determine the
player’s benefits, the final state is transformed into a Bell state and projected onto
the complete set of maximally entangled basis-states of the two-particle polarization
Hilbert space. This so-called Bell measurement is very important for many quantum
communication experiments (e.g. dense coding, teleportation and quantum cryp-
tography [3]), and will be covered in section 3.3. Lütkenhaus et al. presented a
no-go theorem for a perfect Bell state analysis of two polarization-entangled qubits
involving only linear optical elements [4]. Nevertheless, in this experiment, it will for
the first time be possible to perform a complete Bell measurement with a method
presented by P. Kwiat and H. Weinfurter [5]; the results are presented in chapter 4.

The idea behind this measurement is to make use of simultaneous entanglement
in multiple degrees of freedom. If the photons are entangled in more than one degree
of freedom one can operate in a higher dimensional Hilbert space. In our case the
intrinsic time-energy entanglement of the down-converted photons will be employed
to achieve additional arrival-time correlations of the photons after having passed
an asymmetric interferometer with polarizing beam splitters to temporally separate
horizontal and vertical polarizations. Since the photons are entangled in the polar-
ization and the time degrees of freedom, i.e. they are embedded in a larger Hilbert
space, and a complete Bell state analysis to determine the payoffs is possible. This
will for example allow to realize optimal dense coding, where the full two bits of
information are encoded in the polarization of the two qubits of a Bell state. This
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class of state transformations can be regarded as a realization of a simple non-trivial
two-qubit quantum logic network.

Apart from the possibility to distinguish between all four Bell states and the
implementation of single qubit gates it is noteworthy that our quantum network
involves a controlled NOT operation. The importance of a controlled NOT gate
stems from the fact that it is (together with a set of single-qubit gates) a universal
quantum gate [6, 7]. Single qubit gates are relatively simple to realize (s. section
3.2), but the controlled-NOT is generally much more difficult to implement, because
it requires two separated carriers of quantum information to interact in a controlled
manner. Here the advantage of the optical approach, namely the photon’s intrinsic
lack of decoherence when transported through free space or optical fibers, turns
into a drawback. Since the photon-photon interaction is extremely weak and hence
takes place with a negligible probability of success, an optical implementation of a
two-qubit gate necessarily requires strong non-linearities.

One idea to avoid the need for a direct nonlinear coupling between photons is
to mediate the interaction by something else, for example an atom, of course at
the expense of introducing noise into the system. Therefore, current experiments
are trying to map the state of photons onto atom or ion states and vice versa to
implement a non-trivial two-particle gate with these systems. Nevertheless it is
desirable to have an optical implemention of such gates with linear elements to
avoid all the problems (e.g. decoherence, noise, more complex setups, etc.) that
come with schemes involving atoms or ions.

A circumvention of the necessity for a strong non-linearity to implement a
controlled-NOT gate has been proposed by E. Knill, R. Laflamme and G.J. Milburn
(KLM). They showed that scalable quantum information processing with linear op-
tical elements ”is possible in principle but technically difficult” [8]. Their scheme for
”efficient quantum computation” requires phase shifters, beam splitters, determin-
istic (i.e. on-demand) single-photon sources and the intrinsic non-linearity of highly
efficient discriminating single photon detectors. They propose that it is possible
to increase the probability of success asymptotically (as n/(n + 1)) at the expense
of an increasing number (n) of auxiliary photons which have to be independently
prepared in any desired entangled state. Using beamsplitters it is possible to couple
the additional auxiliary modes to the initial input state so that the resulting state is
living in the direct product of the two Hilbert spaces and therefore, a larger Hilbert
space as well.

Of course, our approach is not sufficient for the implementation of general pur-
pose controlled-NOT operation in universal quantum networks, because it requires
entanglement in more than one degree of freedom, which will generally be difficult
to achive. But since the generation of the necessary entangled ancilla states in the
KLM scheme is very challenging, it is interesting to apply the presented idea of
entangled states embedded in higher dimensional Hilbert spaces as an extension.
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1 Introduction

In the following I will present the first optical implementation of a quantum
game, showing how entanglement and quantum strategies give rise to a new solution
of a classically unsolvable game. For the first time a complete Bell state analysis with
linear optical elements is performed utilizing entanglement in higher dimensional
Hilbert spaces. Furthermore, results will be given demonstrating optimal dense
coding.
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2 Theory

2.1 Quantum Information

The discussions and research concerning the foundations of quantum mechanics has
led to the new field of quantum information and communication in recent years.
The debate about how much information a quantum state may contain and whether
this information completely decribes the state, brought up a new treatment of infor-
mation for quantum systems and many ideas how to perform classically impossible
information processing tasks.

Quantum information processing deals with all forms of communication tasks,
i.e. transmission of information through a channel from a sender to a receiver, mak-
ing use of quantum mechanical systems and operations. Therefore, the quantum
theory of information depends on how information can be encoded in a carrier (e.g.
photons and atoms),involving entanglement and coherent superpositions of states,
which I will describe in the following paragraphs.

In the mathematical formalism of quantum mechanics, a state is treated as a
vector in a Hilbert space and observables are represented by hermitian, generally
incompatible (i.e. non-commuting) operators.
In quantum information theory a state is in the first place understood as the repre-
sentation of information carried by a physical system.

The fundamental concepts in quantum information theory are the superposition
principle and entanglement. Their importance most prominently becomes apparent
in quantum computation applications, where many computational tasks can be per-
formed simultaneously. In a classical physics context, information is always defined
by the observation of measurement results but in quantum physics it is possible
to simultaneously process information encoded in linear combinations of states in-
compatible with the classical coding scheme of information. This is the reason why
certain problems, such as integer factorization or simulations of many particle quan-
tum systems, can be solved very efficiently using a quantum computer, although
it may not perform better than classical computers in general purpose computa-
tion. The computation of these particular problems speeds up exponentially with
the number of input qubits if it is possible to utilize (destructive) interference of
parallel processed information to limit the number of possible output states.

Within quantum theory one has to distinguish between classical and quantum
information. Classical information can be copied without any restrictions, but in
accordance with general relativity it cannot be distributed faster than at the speed
of light. On the contrary, properties of entangled systems can simultaneously be
present at different locations. The key feature distinguishing quantum from classi-
cal information theory are the non-classical correlations between outcomes of mea-
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2.1 Quantum Information

surements performed on physical carriers of (quantum) information. Therefore, an
important task of quantum information theory is to characterize entanglement and
its interrelation with classical information.

Although it is understood that entangled composite systems have more infor-
mation contained in the correlations of measurement outcomes than any classical
mixture of its individual constituents could ever have, there are still open ques-
tions. For example, it is still discussed what the most general constraints are the
correlations have to violate in order to be called non-classical, and which classes
of states violate these constraints, especially for higher dimensional and for multi-
partite states. In this chapter I will only describe some of the currently discussed
most general criteria for entanglement, as violation of a Bell inequality or entangle-
ment witnesses based on separability criteria, but there are already new approaches
to this question [9].

In the following I will introduce some of the common notations and concepts
of quantum information processing. Furthermore, I will briefly review the historic
discussion about the foundations of quantum mechanics to show where current re-
search interests originate and to clarify what the distinct quantum features are from
which the new possibilities of quantum information arise. However, a more extensive
overview of quantum information and computation can be found in [10, 11, 2].

2.1.1 Qubits

The basic unit of classical information is called a bit. For example, it can be
implemented by a two-state system, with (boolean) states one may call |0〉 and |1〉,
which can take on two different logical values, 0 and 1. The two states could be
realized as two distinguishable voltages (as in classical computers) or two different
polarization states (|H〉, |V 〉) of a photon.

In quantum mechanics a two-state system may also exist in any coherent super-
position of the two distinguishable classical states: |ψ〉 = a|0〉 + b|1〉. A single bit
of binary information contained in a two-state quantum system is therefore called
a quantum bit or qubit and is the quantum analog of the classical bit. Typically a
qubit is carried by a microscopic system where the two classical boolean states |0〉
and |1〉 form the basis of a two-dimensional Hilbert space

�
. The continuous set of

superposition states is represented by complex linear combinations of basis states.
The coefficients squared absolute values can be interpreted as probabilities which
have to sum up to unity, |a|2 + |b|2 = 1. If measured, the system is found randomly
in one of the two states, according to the probability distribution. As any qubit
can be represented as a vector on the Bloch or Poincaré sphere (s. Fig. 2.1), two
quantum states can only be unambiguously distinguished from each other if they
are orthogonal.
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2 Theory

Figure 2.1: Poincaré sphere repre-
sentation of a qubit’s Hilbert space.

The state in which the qubit is encoded has
no analog in classical physics, since it has to
be a coherent superposition and not an incoher-
ent mixture of the classical states! Contrary to
incoherent mixtures, for coherent superposition
states it is always possible to find a transforma-
tion of the basis of the state space such that the
qubit transforms into a basis vector with a well
defined qubit-value.

The most famous example of quantum su-
perposition is single photon interference ob-
served in the double slit experiment or in a
Mach-Zehnder interferometer. In both examples
the condition for interference to occur is the fun-
damental impossibility to determine which path
(slit) the photon took.

2.1.2 Entanglement

New and especially interesting features for quantum information processing arise
when one considers two (or more) qubit systems.

It is straightforward in a classical coding scheme to encode one bit of informa-
tion on each qubit. A pair of qubits1 could then be prepared in any of the four
boolean states, |00〉, |01〉, |10〉 and |11〉. However, in quantum mechanics it is also
possible to encode the information onto a pair of qubits in any superposition of
the four classical states |00〉, |01〉, |10〉 and |11〉, in particular also onto entangled
states which contain correlations between their subsystems, much stronger than any
classical correlation. The way the information is encoded either in the properties
of the individual subsystems or in the joint properties of both qubits the states
are labeled “separable” or “entangled”. All two-qubit states are called separable if
they can be written as a combination of tensor products of single particle states (s.
2.1.3). All classical states are separable because they can completely be described
by the properties of each part separately. All other states are called non-separable
or entangled states2. For these states it is generally not possible to attribute to each
subsystem individually any well defined information (i.e. a definite state vector),
only all qubits together contain all the information.

For a quantum system with two qubits the four orthonormal maximally entan-
gled states forming a complete basis of a four dimensional Hilbert space are called

1For n qubits the quantum state could be represented by a vector in a 2n-dimensional Hilbert
space, where every dimension corresponds to a different classical state: ψ =

∑
i=0...2n−1 pi|i〉

2The term “entanglement”, or “Verschränkung” in german, was introduced by Schrödinger in
[12].

12



2.1 Quantum Information

Bell states3. They are coherent superpositions of four possible separable states:

|ψ+〉 = 1√
2
(|HV 〉+ |V H〉) (2.1)

|ψ−〉 = 1√
2
(|HV 〉 − |V H〉) (2.2)

|φ+〉 = 1√
2
(|HH〉+ |V V 〉) (2.3)

|φ−〉 = 1√
2
(|HH〉 − |V V 〉) (2.4)

These states have the property that it is enough to manipulate only one of the two
entangled photons to transform one basis state into any other of the four Bell states.
Thus it is possible with single qubit operations to encode two bits of information
per photon, i.e. four possible orthogonal states of a two-photon system [13].

2.1.3 Verification of Entanglement

In quantum information, entanglement is one of the central resources to realize
quantum communication protocols. Hence it is important for experimental imple-
mentations to verify that one really created an entangled state, e.g. with sponta-
neous parametric down conversion (s. section 2.3.2). The most simple example of
an entangled state is a pure state ρab, for which the reduced density matrices of its
subsystems are diagonal4. In general, however, a state which is intended to be an
entangled pure state will be in a mixed state5 or might even be separable due to
imperfections and its uncontrollable interaction with the environment.

To detect whether a given state is entangled, there are different methods such
as tests of the polarization correlations (s. section 4.1), generalized Bell inequalities
(s. equation (2.6)) and witness operators (s. equation 2.13).
Given a pure state, all of the above criteria are able to satisfactorily show that it is
entangled. For experimentally generated two-qubit states a general criterion based
on the properties of the partial transpose of the state was found to be a sufficient
test for entanglement. For higher dimensional mixed states however, no such general
criterion could be obtained to test if existing correlations of measurement results are

3These states maximally violate a Bell inequality, therefore they are called Bell states.
4The reduced density matrix of one subsystem can be found by tracing ρab over all states of the
other subsystem (e.g. ρa = Tr(ρab)b =

∑
i=0,1〈i|ρab|i〉 =

∑
i=0,1 |pi|2|i〉〈i|)

5Mixed states can be produced in many different ways but it is not possible to find out how a
given mixed state actually was produced and thus one cannot extract all the information the
state really contains.
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quantum or not. Only for some particular cases it is possible to find out what kind
of correlations they contain using the so-called entanglement witness operators.

In the following I will review the discussion about EPR’s paradox, because it
first pointed out the remarkable features of entangled states and it led to the first
method (Bell’s inequality) to distinguish some of them from classical (or separable)
states. Then witness operators are presented, which are a rather new and more
powerful tool to detect entanglement compared to Bell’s inequality.

EPR’s Paradox

The counterintuitive features of entangled quantum systems were used by Einstein,
Podolsky and Rosen (EPR) to argue that the quantum mechanical description of
the physical reality cannot be considered complete [14]. They understand a theory
to be complete if every element of the physical reality is represented in the physical
theory and they give the following criterion of reality:
“If, without in any way disturbing a system, we can predict with certainty (i.e. with
probability equal to unity) the value of a physical quantity, then there exists an ele-
ment of physical reality corresponding to this physical quantity.”
One assumption underlying the EPR-paper is Einsteins locality principle6 stating
that the properties observed on one subsystem are independent of whatever manip-
ulation and measurement is performed on any other subsystem, together making up
for the whole composite system. For completion they suggested that there might be
a supplementary, more exact picture, in which individual systems are described by
their wavefunction and additional hidden variables7.

Bohm explicitly constructed a hidden variable interpretation of quantum me-
chanics [16] and rephrased the EPR argument for two spin- 1

2
particles in a singlet

state [17]:

|ψ〉 = 1√
2
(| ↑〉a| ↓〉b − | ↓〉a| ↑〉b) (2.5)

The spin singlet state is spherically symmetric and has no preferred direction in
space. Note, that if one identifies the spins with polarizations one recognizes one of
the Bell states, which can be used as the necessary input state for our experiment.

N. Bohr [18] was the first to realize that knowing the state of a composite system
does not necessarily mean that one has knowledge about its parts, which are not in
any defined state - the feature we refer to as nonseparability.

None of the two qubits in (2.5) has a defined bit value and it is impossible to
predict which of the two possible product states will be realized if a measurement
is performed on one of them, instantaneously determining the value of both qubits.

6“But on one supposition we should, in my opinion, absolutely hold fast: the real factual situation

of the system S2 is independent of what is done with the system S1, which is spatially separated

from the former.” A. Einstein in [15]
7The parameters are called “hidden” because their values cannot directly be measured.
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2.1 Quantum Information

This holds true even if the qubits are separated by an arbitrary distance. This
feature, called nonlocality, is a consequence of linear superpositions of correlated
many particle states and cannot be reproduced classically, i.e. on the basis of local
properties of the subsystems8. For a more detailed discussion of the paradox and
its philosophical aspects see [19, 20].

Bell’s Inequality

The underlying philosophical concept of local hidden variable (LHV) theories is
called local realism9. A hidden variable theory making the same predictions as
quantum mechanics can be shown to necessarily involve either signals propagating
instantaneously between spatially separated particles and hence not being Lorentz
invariant [21, 22] or being not deterministic and thus measurement results would
be inherently unpredictable. In 1964, Bell [23] used these peculiarities to formu-
late a testable inequality for observables of spin correlation experiments, for which
predictions of hidden variable theories based on Einsteins locality principle and the
requirement for determinism do not agree with the statistical predictions of quantum
mechanics.

PSfrag replacements

φ
φ

φ

α

β

α′

β′

Figure 2.2: Orientations of
α, α′, β, β′ for maximal violation of
the CHSH inequality (2.6).

Clauser, Horne, Shimony and Holt (CHSH)
generalized Bell’s theorem [24] such that it ap-
plies to realizable experimental tests with pair
detection of all local hidden variable theories. A
proof of the CHSH inequality by Bell can also be
found in [22], here I rather give the result. For
any local hidden variable theory the expectation
values E(i, j) of spin measurements on two par-
ticles have to fulfill the inequality

−2 ≤ SCl(α, α
′, β, β ′) = (2.6)

E(α, β)− E(α, β ′) + E(α′, β) + E(α′, β′) ≤ 2

for any combination of analyzer settings i =
α, α′ and j = β, β ′. The proof of Bell’s theo-
rem is then completed by showing, that there in
fact exist analyzer settings for which the predic-
tions of quantum mechanics violate the inequal-
ity |SCl| ≤ 2. For entangled two-qubit states,

8Note that nonlocality does not contradict relativity because no information is transfered when
the result of a measurement on particle a is determined and hence the result of a similar
measurement on the other particle, b, is known instantaneously, since the correlation can only
be ascertained by a subsequent comparison through a classical channel.

9Realism follows from the criterion of reality and locality, which deduces from causality, i.e. the
cause has to precede its effect, and relativity, i.e. all inertial frames are equitable.
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maximal violation occurs for the orientations shown in figure 2.2 with φ = 45◦. For
this case one obtains Cirel’son’s upper bound [25] on S for quantum mechanics:

S(α, α′, β, β ′)QM = 2
√
2 > |SCl|. (2.7)

Bell’s inequality shows that entanglement leads to observable effects which confirm
the existence of entangled states.

How to actually observe such a violation of Bell’s inequality in a laboratory
was first shown for a set of local measurements on the two subsystems of an EPR
singlet state by Fredman and Clauser [] and later most prominently by A. Aspect
et al. [26, 27, 28] with photons10 and by M. Lamehi-Rachti and W. Mittig [30] with
protons.

All experiments to date (for an overview see [19, 22]) are in agreement with the
predictions of quantum mechanics and hence confirm11 the existence of the entangled
states needed for my experiment.

Entanglement Witness

Another possibility to detect entanglement is the application of so called entangle-
ment witnesses. I will explain this concept in more detail, because it is not covered
in standard text books. This approach is not intended to rule out any local hidden
variable theories (in fact for the example below it is possible to construct a LHV
model which reproduces the quantum mechanically expected results) but the overall
motivation is to characterize the set of separable and entangled states.

The starting point is the separability problem:
When does the state of a composite quantum system contain no quantum correla-
tions or entanglement?
As discussed in [31, 32], non-separability in quantum mechanics implies non-classical
phenomena.

A state ρ is called separable if ρ can be written as a combination of product
states forming a convex set [33]:

ρsep =
k∑

i=1

piρ
a
i ⊗ ρbi , (2.8)

with
∑

i pi = 1 and pi ≥ 0. If the expectation value of a joint measurement of
two observables, A and B, acting on two respective subsystems always factorizes

10More recent tests of “Bell’s Inequality under Strict Einstein locality Conditions” are presented
in [19, 29].

11Since detection efficiencies of greater than 71% are required for experimental tests of Bell’s
inequality all tests today rely on some feasible but not testable assumptions (e.g. the fair
sample assumption) from which loopholes could be constructed.
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2.1 Quantum Information

Tr[(A ⊗ B)ρu] = Tr[Aρu] Tr[Bρu], the corresponding state ρu is said to be un-
correlated. In case the expectation value does not factorize Tr[(A ⊗ B)ρabsep] =∑n

i=1 pi Tr[Aρ
a
sep,i] Tr[Bρ

b
sep,i] the state ρabsep (2.8) is termed classically correlated.

A separable state contains no quantum correlations because it can be prepared by
two parties using only local operations and classical communication (LOCC). Con-
sequently, a mixed state of a composite quantum system is called non-separable if
it cannot be written as a convex combination of product states.

The Horodeckis showed that non-separable states can be identified by means
of positive maps12. In fact the characterization of entanglement and separability is
rather a mathematical problem of how to classify and characterize positive operator
maps [31, 34].
Peres found that as a necessary condition for separability [35] of a given state ρ
the partial transpose (s. A.2), ρTa =

∑k
i=1 pi(ρ

a
i )
t ⊗ ρbi , is only allowed to have

non-negative eigenvalues.
From the fact that positive maps as well as partial transposition preserve her-

miticity, although they are not a unitary operation, the Horodeckis deduced a suf-
ficient condition for separability [31]:

A state ρ is separable if and only if the tensor product of every positive map
acting on subsystem a and the identity acting on subsystem b maps the state ρ onto
a non-negative operator.

Together with the necessary condition of Peres one obtains the following theo-
rems [31, 35]:

Theorem 1 (Peres-Horodecki) If ρ is separable then ρTa ≥ 0.

Theorem 2 (Peres-Horodecki) If ρTa ≥ 0 in composite Hilbert spaces of dimen-
sions 2× 2 or 2× 3, then ρ is separable.

For higher dimensional Hilbert spaces there exist bound entangled states13 which
are not separable.

For bipartite density matrices, ρab, a necessary and sufficient condition for sep-
arability involving the witness operator W was introduced by B. Terhal [34, 36]:

Theorem 3 (Terhal) If ρab is entangled, then there exists a hermitian operator W
acting on Ha ⊗Hb such that:

Tr(Wρab) < 0 and Tr(Wρab,sep) ≥ 0
for all positive semidefinite separable density matrices ρab,sep.

12Maps are said to be positive if they map positive operators onto positive operators. Positiv
operators, P , are a subclass of Hermitian operators which have the property that for any
vector |v〉 the inner product, 〈v|P |v〉, is real and non negative.

13i.e. entangled states with positive partial transpose (PPT) from which no pure entangled state
can be distilled.
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To prove this theorem, one has to show the existence of a hyperplane separating
the set of all separable density matrices on Ha ⊗ Hb from the point corresponding
to ρab. This hyperplane (s. Fig. 2.3) is a set of density matrices, τ , characterized
by its normal vector W , i.e. Tr(Wτ) = 0, which defines a positive map. Therefore
one can say that W detects entanglement and it is called an entanglement witness.
The hyperplane is perpendicular to the connecting line between the identity (at the
center of the set of separable states) and the density matrix in question.

separable
ρ

W
states

all
states

Figure 2.3: Schematic representa-
tion of a (optimal) witness operator.

From figure 2.3 it is clear that the most use-
ful witnesses correspond to hyperplanes being
tangent on the set of separable states. A witness
is said to be optimal if no other witness can be
found which detects more entangled states. An
optimal witness therefore has to touch the set of
separable states and then has to be rotated until
it detects a maximum of entangled states [37].

For a given experimental situation where we
aim at producing a certain state, in our case a
Bell state, it is always possible to construct an
optimal witness operator in the following manner
[38]. Consider the case that we aim at producing
the pure Bell state (2.3)

ρab(φ
+) = |φ+〉〈φ+| = 1

2




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 .

(2.9)
Due to noise, represented by the mixed state σ, in the experiment we will effectively
have produced the convex combination

ρab = p|φ+〉〈φ+|+ (1− p)σ (2.10)

with the (unknown) probability 0 ≤ p ≤ 1 of having produced the desired entangled
state, ρab(φ

+) and white noise σ. To construct the entanglement witness W , which
fulfills theorem 3, one has to find the eigenvector |emin〉 of ρTa

ab (φ
+) corresponding to

an eigenvalue λmin < 0. Solving the eigenvalue equation ρTa

ab (φ
+)|emin〉 = λmin|emin〉

for the particular case of white noise, corresponding to the maximally mixed state
σ = 1

4

�
, one obtains the minimal eigenvalue λmin = −1/2 and the corresponding

minimal eigenvector |emin〉 = (|HV 〉 − |V H〉)/
√
2. Therefore, according to the

Peres-Horodecki criteria (theorems 1 & 2) ρab(φ
+) is not separable and we obtain
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the optimal witness operator which detects the entanglement of ρab:

W = (|emin〉〈emin|)Ta =
1

2




0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0


 . (2.11)

It can now be shown [39] that this witness also works for any other kind of noise.
To be able to experimentally test whether a given (imperfect) state is entangled

or not, one has to decompose the witness operator into a sum of local projectors on
product states14. With the definitions given in A.2, one finds the optimal decompo-
sition to be

W =
1

2
(|HV 〉〈HV |+|V H〉〈V H|−|PP 〉〈PP |−|MM〉〈MM |+|LL〉〈LL|+|RR〉〈RR|).

(2.12)
and one determines

Tr(Wρab) =
∑

i,j

〈ij|Wρab|ij〉 (2.13)

Since the trace is invariant under basis transformations15, it can be written as a sum
of expectation values which correspond to measurement values (s. 4.1). Assuming
that σ is white noise, one can calculate [38] the probability p = (1− 4Tr(Wρab)]/3.
Note that in general, a witness does not provide a measure of entanglement.

Thus it is possible with this method to determine if the produced state ρab is
entangled, i.e. Tr(Wρab) < 0 and with which probability p we really generated the
desired pure state ρab(φ

+).

Although a Bell inequality is some kind of entanglement witness, the criteria for
non-separability of Peres, Horodecki and Terhal (Theorems 1-3) are stronger than
any known Bell inequality in the following sense: Even though every pure entangled
bipartite state and many distillable16 mixed bipartite states violate a Bell inequality,
while separable states don’t, there exist non-separable states which do not violate
any known Bell inequality. A Bell inequality can therefore be understood as an
entanglement witness which is not optimized. Hence, states which are lying close to
the set of separable states might not be detected by a Bell inequality. For example
Werner states (a mixture of a maximally entangled state and the separable maxi-
mally mixed state, i.e. the identity operator) only violate the CHSH inequality if the

14Of course, the state can also be determined performing state tomography with local measure-
ments only and then checking for nonpositivity of its partial transpose but this requires many
more measurements then the witness-method.

15Tr(ρab) =
∑

i,j

∑
m,n〈ij|mn〉〈mn|ρab|ij〉 =

∑
i,j

∑
m,n〈mn|ij〉〈ij|ρab|mn〉 =

∑
m,n〈mn|ρab|mn〉

16Distillable states are mixed entangled state which can be mapped onto a pure entangled state
using only LOCC and auxillary measurements.
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probability of having the maximally entangled state in the mixture exceeds 1/
√
2.

However, they are entangled if and only if the probability p is higher than 1/3 and
this entanglement can be detected by a witness [40]. For two-qubit states the Peres-
Horodecki is sufficient to detect all entangled states. However, for higher dimensional
and multipartite states it is unknown until now whether all (e.g. PPT) entangled
states violate some Bell inequality. Entanglement witnesses are (currently) able to
detect more non separable states than a Bell inequality, and therefore, this method
will be used in the experimental part of this work as a state-of-the-art technique,
demonstrating the presence of entangled states.
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2.2 Game Theory

The theory of games is the theory of interactive decision making and tries to fore-
cast which will be the most rational development of a given game. It provides
mathematical models and techniques to analyse situations (competition as well as
cooperation) in which several parties have to make a decision, according to their
individual interests, influencing one anothers welfare.

To understand how decisions are made games serve as hypothetical examples
of social situations involving individuals called players. The models may appear
unrealistically simplified than the more complicated situations of real life, but by
ignoring the less important details of reality it is possible to focus on the more
fundamental questions of conflict and cooperation.

In a game two (or more) players are trying to reach a final state which ensures
them the best benefit as a cooperation or as an individual. The Strategic or Normal
Form Representation of a game consists of [41]:

• set of players (i = 1, ..., N)
The players are assumed to act rational and intelligent. Rational means that
they will try to maximize their individual expected payoffs measured in some
utility scale and intelligent is meant in the sense that they understand game
theory and the behavior of other intelligent17 players.

• set of strategies (H, {si})
The strategies are the options available to the players in certain game situa-
tions. According to the rules, they determine the allowed states of the game
associated with the state spaceH and the permissible operations of the players
which define the strategic space Si from which each player, i, has to choose
one strategy.

• payoff functions ($i)
The payoff or utility function $i specifies the benefit, i.e. a real number,
of the i- th player for a given final state of the game. This quantitative
characterization of an individual players preference depends on the strategies
of all other player’s too.

The behavior of the players can be understood by the expected-utility maxi-
mation theorem [1]. It follows from models of evolutionary selection for complex
organisms (e.g. social organizations) that “there must exist some way of assigning

17I’m not trying to make a statement about businessmen here, but as a matter of fact there do
exist theories in economics assuming rationality but NOT intelligence of the players, e.g. price
theory.
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utility numbers to the various possible outcomes [that a rational decision-maker]
cares about, such that he would always choose the option that maximizes his ex-
pected utility” [1]. The possible operations (according to the rules) performed by
the players can be referred to as moves. An instruction that specifies the move to
be made in each possible game situation is called a strategy, and the combination
of strategies that the players might choose is a strategic profile. If a player opts for
a pure strategy, he or she will always play a given move depending on the actual
situation of the game. In mixed strategies a player will select one move from a subset
of different moves with a certain classical probability (s.2.2.1).

Of particular interest are static games of complete information. A game is called
static when all players choose their actions simultaneously, i.e. without knowing
what the other players are going to do, contrary to dynamic games where the players
perform sequential moves by turn, like in chess. Furthermore, each player knows the
values of the payoff functions of all opponents and has therefore complete information
about the consequences of all possible choices.

For this class of games, one distinguishes zero sum games18, where the expected
payoffs of all players sum up to zero for every final state (e.g. in a two-player game:
$A(sA, sB) = −$B(sA, sB) ∀sA ∈ SA, sB ∈ SB), and non-zero sum games otherwise.
In zero sum games the interests of the players are diametrically opposed, while in
non-zero sum games they no longer appear in strict opposition to each other, but
may rather benefit from mutual cooperation.

The goal of game theory is to find that ensemble of strategies that gives each
player the best chance of winning. Hence the rational Solution of the Game is
the strategic profile which is actually played. It is said to be acceptable only if it
unambiguously specifies one such profile.

2.2.1 Classical Solution Concepts

To find the rational solution of a game there are classical concepts [41] which I will
present in the following. Thereby any rule that specifies a prediction about how the
players are expected to behave is meant by a ’solution concept’.

Elimination of strictly dominated strategies

A strategy si of the i-th player is strictly dominated by another strategy s
′

i if

$i(s1, ..., si, ..., sN ) < $i(s1, ..., s
′

i, ..., sN ) ∀ (s1, ..., si−1, si+1..., sN). (2.14)

Since rational players are trying to maximize their benefits, they won’t play strictly
dominated strategies. Therefore, one may find a rational solution by eliminating all

18The fundamental theorem of ”zero-sum” games was published by the Hungarian mathematician
John von Neumann [42]
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strictly dominated strategies. However, for some problems there are no dominating
strategies and hence new solution concepts are needed.

Nash Equilibrium

A very important concept to find a solution to a non-zero sum game is the determi-
nation of Nash19 Equilibria.

A Nash equilibrium is a strategic profile (s∗1, s
∗
2, ..., s

∗
N ) where every strategy

s∗i satisfies

$i(s
∗
1, ..., s

∗
i , ..., s

∗
N ) ≥ $i(s

∗
1, ..., si, ..., s

∗
N ) ∀ si ∈ Si (2.15)

for each player, i.

For example in a two-player game (s∗A, s
∗
B) is called a Nash equilibrium if

$A(s
∗
A, s

∗
B) ≥ $A(sA, s

∗
B) and $B(s

∗
A, s

∗
B) ≥ $B(s

∗
A, sB) ∀sA ∈ SA, sB ∈ SB.

Hence, a Nash equilibrium corresponds to that combination of strategies which
is the best choice for each single player if all his opponents take their best decisions,
too. Each of the players looking at his move in retrospective comes to the conclusion
that he or she could not have done better by unilaterally changing his or her own
strategy. It is a stable equilibrium, since no player has a motivation to unilaterally
change his strategy from the Nash equilibrium solution, as he would suffer some loss
in his own payoff. If only one strategic profile survives the process of elimination of
strictly dominated strategies it constitutes a unique Nash equilibrium of the game.

The set (s∗1, ..., s
∗
N ) is called Pareto optimal 20 if it is not possible to increase one

players payoff without lessening the payoff of another player. Hence, for a Pareto
optimal outcome of a game, there is no other outcome that would make all players
better off. A Nash equilibrium is not necessarily Pareto optimal, i.e. efficient, even
if it is unique and there can be another outcome which would make both players
better off.

But there exist games with no or multiple Nash equilibria, where no rational
prediction about the development of the game can be made. Game theory neither
shows how to compute a Nash equilibrium nor how to choose a particular one if
multiple equilibria are already known. One only gets an acceptable solution if the
Nash equilibrium is unique. Thus, a new solution concept is needed for all other
problems.

19John Nash received the Economics “Nobel” prize in 1994 for his contributions to game theory.
In 2001 the life and work of Nash was also subject to the Oscar awarded movie “A Beautiful
Mind”.

20This concept was invented by the Italian economist Vilfredo Pareto.
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Mixed Classical Strategies

Within the framework of classical game theory, the players might not only be allowed
to play pure strategies, but also mixed strategies. In mixed classical strategies, a
probability distribution assigns a classical probability pαi to each pure strategy sαi ;
α indicates one out of all possible strategies of the i-th player. If the game would
repeatedly be played, the different strategic profiles should appear according to the
probability distributions. Allowing the players to utilize mixed strategies also in
cases where a game is only played once is actually an extension of the rules, as if
you would allow them to use a random number generator, biased depending on their
choice of probabilities, when taking the decision which move to play. Depending on
the situation of the game, a player will then select the pure strategy sαi from the
strategic space with probability pαi . This probability distribution corresponds to the
uncertainty of each player about another players choice of strategy as well as his
own in one specific situation of the game.

The payoffs $i have to be treated now as the average gain of the i-th player.
Hence, the expected payoff functions become:

〈$i〉({pi}, ..., {pN}) =
∑

α,β,...,ν

pα1p
β
2 · · · pνN$i(sα1 , sβ2 , ..., sνN ) , (2.16)

where {pi} is the set of probabilities associated with the set of strategies {si}.
As an example for two players A and B, and two strategies the probabilities are
{pA} = {p, 1− p} ∀p ∈ [0, 1] and {pB} = {q, 1− q} ∀q ∈ [0, 1] .

It was shown by Nash in 1951 that the following ’general existence theorem’
applies to games where classical mixed strategies are allowed:

Theorem 1 (Nash) In every N-player normal form game with finite state space
there always exists at least one Nash Equilibrium in pure or mixed strategies.

However, this Nash equilibrium does not have to be a unique solution for the
problem! One might obtain multiple Nash equilibria which all satisfy the notion of
a rational solution so that the theory fails to say which of them represents the real
development of the game.

2.2.2 Quantum Solution Concepts

The most important classical solution concepts have been discussed, but there still
do remain games which are classically undeterminable, or which have unsatisfactory
solutions. An idea brought up by J. Eisert, M. Wilkens, and M. Lewenstein [43, 44]
to solve such games is to use Quantum Strategies and Entanglement.

First I want to specify my terms concerning the meaning of the expressions
’strategy’ and ’state’ of a game because there has been some confusion about this
issue [45, 46]. A strategy is the players choice of what move to play. To clarify
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what I mean by the state of a game, consider a game where every player gets a coin,
heads up, and has to choose between flipping or not flipping the coin as the only two
possible strategies. Initially all coins may be in the ’state’ heads up and so is the
state of the game. After the players executed their moves the state of the game has
changed to some final state depending on the players strategies, i.e. a combination
of coins heads up and tails up.

In the quantum mechanical formulation of game theory, the outcome of a clas-
sical strategy sαi , s

β
i ,. . . of the i-th player is treated as a state represented by basis

vectors |sαi 〉, |sβi 〉,. . . of the strategic space, which is given the structure of an Hilbert
Space,

�
i. Additionally to the discrete set of basis vectors, also any linear super-

position of them, |ψi〉 = aαi |sαi 〉+ aβi |sβi 〉+ . . . , is an allowed state vector. The state
of the game formally is a vector in the tensor product space of the single players
strategic spaces, H =

�
i ⊗

�
j ⊗ . . . . The resulting Hilbert Space is spanned by

the classical game basis, |sαi sαj . . . 〉, |sβi sαj . . . 〉,. . . It includes the set of all possible
quantum states and contains the discrete and finite set of classical (pure and mixed)
states as a subspace, where all pure states form a complete basis. Note that by pure
and mixed states here I mean states resulting from the players having chosen pure
or mixed strategies, not the quantum mechanical notion of pure and mixed states
as used in 2.1.2. As the game proceeds, the players are allowed to perform opera-
tions represented by unitary matrices acting in

�
i,

�
j ,. . . respectively, i.e. they act

locally on their subsystem only, being able to jointly prepare any state they wish to.

Quantum states of the game therefore are linear combinations of pure classi-
cal states with complex coefficients which give the probability of having played a
particular pure classical strategy (like for a mixed classical strategy). Hence, in a
quantum game one has to compute the expectation values of the players payoffs.
Note that we don’t expect any quantum interference effects between the amplitudes
as long as we are dealing with static games.

Concluding, one distinguishes two types of states on which the players later on
perform their local transformation corresponding to the strategy they decided to
play:

Factorizable States

Factorizable initial states can be written in the form

|ψin〉 =
∑

α

aαi |sαi 〉 ⊗
∑

α

aαj |sαj 〉 ⊗ . . . (2.17)

Choosing appropriate expressions for their operations, the players will always be able
to arrive at the same final state of the game, and the expected payoff functions will
remain unchanged, independent of the initial state. Factorizable Quantum States
are able to reproduce the results of the mixed classical game if the players are al-
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lowed to apply unitary (hermitian) operations on their respective subsystem. Hence,
factorizable states correspond to states prepared with classical mixed strategies.

Entangled Quantum States

For entangled quantum states the initial state cannot be written as in equation
(2.17). However, the quantum state space contains both the factorizable states,
corresponding to the pure and mixed strategies of the classical theory, and the non-
factorizable states, which might enable the players to solve classically unsolveable
games and unescapable dilemmas [1, 47]. If the subsystems on which the players
perform their operations are entangled, the choice of strategy of one player can have
an influence on another players subsystem. This considerably extends the range of
possible strategies, even though neither player has knowledge of the other’s decision.

Here, the choice of the initial state is relevant because the payoff functions
corresponding to the Nash equilibria are all initial state dependent. If the state
of a game is an entangled quantum state, it corresponds to more than one set of
probabilities {pαi }, compared to mixed classical strategies. An entangled pair of
states satisfying the Nash equilibrium conditions is the best rational set of choices
which is stable against unilateral deviations.

2.2.3 Quantum Games

Generally speaking a quantum game consists of three steps:

1. Selection of an arbitrary initial quantum state from the state space H.

2. Each player’s manipulation of the initial state by performing local transforma-
tions.

3. Determination of the expected payoff for each player by projecting the final
quantum state onto the basis vectors of H.

In the third step the probabilistic structure of the theory is apparent: The expected
payoff function is an average reward each player would receive if the game was
repeated many times.

As already mentioned in the preceeding paragraph, the initial state of the quan-
tum game may be an entangled state, so that the game is actually played in a basis
of entangled states. The operators Ĵ and Ĵ† are essentially basis transformations
between the classical product state basis and the quantum entangled state basis.

This description may appear fairly technical but it suits very well for an ex-
perimental realization of a two player quantum game. Imagine that the two players
are supplied with a photonic qubit (instead of a piece of paper or a coin) on which
they can “write down” their choice of strategy. The three stages can then be imple-
mented using the schematic setup shown in Fig.2.4. The two qubit gates Ĵ and Ĵ†

26



2.2 Game Theory

Figure 2.4: Setup for a two player quantum game.

and the single qubit gates ÛA and ÛB are discussed in the following paragraph for
a classically well known game, comparing classical and quantum solution concepts.

Prisoner’s Dilemma

Two gangsters, Alice and Bob, have been arrested on suspicion of having commited
a crime. Awaiting their trial they are put in separate rooms for questioning with no
possibility to communicate with one another. If one of them defects and confesses
to the police while the other keeps silent he will be treated as a principal witness,
exempted from punishment, and the other will be sent to prison for five years. In
case both suspects cooperate against the police, i.e. they both remain silent, they
will get away with a two year jail sentence. However, if they both defect and blame
each other, the police will have enough evidence to send both of them down for four
years.

The Prisoner’s Dilemma is a non-zero sum two player static game of complete
information [44]. The two players, Alice (A) & Bob (B), can independently decide
whether they want to Cooperate (C) or Defect (D). Depending on their respective
decisions, the players obtain a certain payoff, which provides a quantitative measure
of their personal preferences. The payoffs given in table 2.5 can be understood as
number of years of freedom the players will enjoy in the five years lying ahead of
them.

To find the solution of the game and forecast how the two players will behave,
we consider the solution concepts presented in the preceeding paragraphs. Rational
reasoning will lead Alice (sA = Ĉ, D̂) to defect if Bob cooperates because it gives
a better payoff (five instead of three). If Bob defects, Alice will choose to defect
as well, since her payoff becomes one instead of zero and therefore defection is a
dominant strategy. Since the game is symmetric, the same applies to Bob. Thus,
mutual defection, D̂⊗ D̂, constitutes a unique Nash equilibrium and is the solution
of the classical Prisoner’s dilemma. However, this solution is not Pareto optimal,
since both players would benefit more from mutual cooperation, Ĉ⊗ Ĉ. The players
face a dilemma because there is a conflict between the Nash equilibrium and the
Pareto optimal outcome. By rational reasoning they are lead to choose the dominant
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Figure 2.5: Payoff matrix in the Prisoner’s Dilemma. The first entry in the parenthesis
denotes Bob’s payoff, the second entry Alice’s payoff.

strategy, defection, although mutual cooperation would make both better off, i.e.
receiving a higher payoff (three instead of one).

But to overcome their “rational” instinct towards selfishness is not the only
way how cooperation can arise. The players can also escape the dilemma by using
quantum strategies and entanglement.

The initial state of the classical game is a vector in the tensor product space
spanned by the basis states |CC〉, |CD〉, |DC〉, |DD〉. To be able to play the
quantum version of the game, we will transform the classical initial state into an
entangled state in H. The unitary entangling operator Ĵ is symmetric (for inter-
change of the players) for fair games and known to both players. It is shown in [43]
that the entangling operator can be written as Ĵ = 1√

2
(Ĉ ⊗ Ĉ + iD̂ ⊗ D̂), if one

requires the classical game to be contained in the quantum version21.
Applying the entangling operator to the classical basis states then yields the

four entangled basis states:

|ψCC〉 = Ĵ |CC〉 = (|CC〉+ i|DD〉)/
√
2 (2.18)

|ψCD〉 = Ĵ |CD〉 = (|CD〉 − i|DC〉)/
√
2 (2.19)

|ψDC〉 = Ĵ |DC〉 = (|DC〉 − i|CD〉)/
√
2 (2.20)

|ψDD〉 = Ĵ |DD〉 = (|DD〉+ i|CC〉)/
√
2. (2.21)

The entangling operator is chosen such that the matrix representation of the classical
strategies remains unchanged for |ψCC〉 being the initial state of the quantum game.

In the second step, Alice and Bob can manipulate their qubits by applying
unitary operators ÛA and ÛB chosen from a subset of all unitary 2×2 matrices. These
operators represent local transformations acting exclusively on the qubits in Alice’s

21i.e. Ĵ has to commute with the direct product of any pair of classical moves.
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and Bob’s possession, respectively. The operators Ĉ =

(
1 0
0 1

)
and D̂ =

(
0 1
−1 0

)

acting on the players respective qubit, |ψA,B〉 = a|C〉+ b|D〉, are associated with the
strategies ’cooperate’ and ’defect’ respectively and correspond to the identity and a
spin flip.

After having executed their operations, they forward their qubits for the final
measurement which determines their payoff, where the final state of the game prior
to detection is given by [43]:

|ψfin〉 = Ĵ†(ÛA ⊗ ÛB)Ĵ |CC〉 (2.22)

The disentangling gate Ĵ†, applied prior to the measurement on the final state,
corresponds to a transformation of the basis of the entangled states (2.18-2.21),
back into the basis of the classical product states. Then, the expectation values of
Alice’s and Bob’s payoffs are:

〈$i〉 = PCC,i|〈ψfin|CC〉|2+PCD,i|〈ψfin|CD〉|2+PDC,i|〈ψfin|DC〉|2+PDD,i|〈ψfin|DD〉|2
(2.23)

where Puv,i for u, v = C,D and i = A,B are Alice’s and Bob’s entries in the payoff
matrix.

For computation of the final state and the payoff functions, several subsets of
allowed unitary operations, Ûi, can be considered as the strategic space:

One-parameter set of local unitary operations This set contains essentially all
local rotations

Û(θ) =

(
cos θ

2
sin θ

2

− sin θ
2

cos θ
2

)
(2.24)

for θ ∈ [0, π], e.g. Û(0) = Ĉ and Û(π) = D̂ [44].

This situation is equivalent to the Prisoner’s Dilemma with mixed strategies
(classical probabilities p = cos2 θ

2
for Ĉ and 1−p = sin2 θ

2
for D̂). Again one obtains

the unique Nash equilibrium for mutual defection D̂⊗D̂ which is not Pareto optimal
and therefore not efficient.

Two-parameter set of local unitary operations For this (still restricted) set of
quantum strategies the operators take the form

Û(θ, φ) =

(
eiφ cos θ

2
sin θ

2

− sin θ
2

e−iφ cos θ
2

)
(2.25)

for θ ∈ [0, π] and φ ∈ [0, π
2
], e.g. Û(0, 0) = Ĉ and Û(π, 0) = D̂ [44].
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With this set of operators one finds a new unique Pareto optimal Nash equilib-
rium, Q̂⊗ Q̂, i.e. both players choose to play

Q̂ = Û(0,
π

2
) =

(
i 0
0 −i

)
(2.26)

This is the only acceptable solution of the game22, giving a payoff $A(Q,Q) =
$B(Q,Q) = 3. By enlarging the set of allowed strategies mutual defection ceases to
be an equilibrium solution, instead a new solution emerges for which the dilemma
has disappeared!

One may object that the police will not allow the gangsters to use quantum
strategies and entanglement and hence it is a change of the rules of the game that
is not very likely to happen. However, only allowing the players to get an entangled
initial state does not make a difference to the classical game, because as long as
the prisoners are not able to use quantum strategies they will not be able to make
use of this extra resource. On the contrary if the players in the classical as well as
the quantum game are constraint to the same set of (quantum) strategies the input
state determines if the game is classical or quantum. Hence neither the input state
nor quantum strategies alone constitute a fundamental change of the classical game.
In the classical prisoner’s dilemma as it is presented in 2.2.3 you may still argue
that the suspects lawyers will try to make the most of the situation by all means
and as long as the police is not aware of the prisoners being able to use quantum
strategies they won’t realize that Alice and Bob will have a benefit of an entangled
initial state.

Set of general local unitary operations The full range of pure quantum strategies
includes every Û ∈ SU(2). This set of allowed strategies contains the previously
discussed sets as subsets. The operators may be written as [49]

Û(θ, α, β) =

(
eiα cos θ

2
ieiβ sin θ

2

ieiβ sin θ
2

e−iα cos θ
2

)
(2.27)

for θ ∈ [0, π] and α, β ∈ [−π, π], e.g. Û(0, 0, 0) = Ĉ and Û(π, 0, 3π
2
) = D̂.

As a consequence of this further enlargment of the strategic space, the Pareto
optimal unique Nash equilibrium from the two-parameter set, Q̂, is no Nash equilib-
rium solution anymore because now every strategy of a player has a counter strategy
of his opponent, giving the opponent the maximum payoff while the player is left
with the minimum payoff. For example, for any operation ÛB(θ, α, β) of Bob there

22It is not required to have a maximally entangled state to reach the Pareto optimal Nash equi-
librium! In the partially entangled case, there is a critical value of entanglement above which
the quantum strategy Q̂ instead of the classically dominant strategy D̂ gives a maximal payoff.
[48]
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exists an optimal answer of Alice D̂ÛA(θ,−α, π2 − β), i.e. “undoing” Bob’s move

and then defecting, such that she gets the maximum payoff $A(ÛA, ÛB) = 5 while
Bob is left with $B(ÛA, ÛB) = 0. The game being symmetric, Bob can improve his
payoff by changing his strategy to the optimal counter strategy for Alice’s operation.
Hence, there is no pair of strategies (ÛA, ÛB) leading to an equilibrium solution!

But there remain Nash equilibria in mixed operations which are more efficient
than the classical outcome, $i(D̂, D̂) = 1. In mixed operations each player selects
a particular operation from the set of allowed operations with a certain classical
probability, piA, p

j
B:

|ψfin〉 =
∑

i,j

piAp
j
BĴ

†(Û i
A ⊗ Û j

B)Ĵ |CC〉 (2.28)

with piA, p
j
B ∈ [0, 1],

∑
i p

i
A =

∑
j p

j
B = 1.

One can find multiple Nash equilibria which consist of pairs of mutually optimal
answers Û

(1)
A , Û

(2)
A and Û

(1)
B , Û

(2)
B

23, played with equal probabilities p
(1)
A = p

(2)
A =

p
(1)
B = p

(2)
B = 1

2
.

Û
(i)
B is Bob’s optimal answer if Alice plays Û

(j)
A for i = j, providing Bob with the

maximum payoff of five and Alice with the minimum of zero, while the payoffs are
reversed for i 6= j. The expectation value of the payoffs for each player then is the
average, $A = $B = 2.5. In this case the (mixed) Nash equilibrium payoff is below
that of mutual cooperation. We still have a conflict between the Nash equilibrium
and the Pareto optimal outcome, but at least we have an improvement over the
classical Nash equilibrium result of mutual defection.

However, there is a continuous set of Nash equilibria24 and it is not obvious
which one the players will realize or whether a Nash equilibrium will be played at
all. The issue of multiple equilibria for the prisoner’s dilemma is resolved by the
gametheoretical concept of the “focal point effect“ [1]:

In a game with more than one equilibrium, anything that attracts the players
attention towards one of the equilibria will make them all expect it and hence re-
alize it. A focal equilibrium has some property that distinguishes it from all other
equilibria; consider for example the following situation [50]: You arrange to meet
with someone on the platform of a railway station. By the time you get there you
realize that the platform is crowded and (infinitely) long. However, at some point
on the platform you can see a huge tree. Where will you meet? - At the tree! Even

23E.g. Û
(1)
A = Ĉ =

(
1 0
0 1

)
, Û

(2)
A = −Q =

(
−i 0
0 i

)
, Û

(1)
B = D̂ =

(
0 1
−1 0

)
, Û

(2)
B = DQ =

(
0 −i
−i 0

)

24Û
(1)
A (θ, α, β), Û

(2)
A (θ, π2 +α,

π
2 +β) and Û

(1)
B (π−θ, π2 +β, α), Û

(2)
B (π−θ, π+β, π2 +α) for arbitrary

θ, α and β played with equal probability by Alice and Bob respectively.

31



2 Theory

if this position of the platform might not be better or worse than any other, the tree
is the only thing that attracts attention.

In our case this isolated focal equilibrium which is different from all other Nash
equilibria is the one where the initial state is mapped on the maximally mixed state.
For this set of strategies the case where the two players are choosing randomly
(with probability 1/2) between the two classical strategies, Ĉ and D̂, is in fact
the focal equilibrium. Only this strategy, where every base state will be realized
with probability 1/4, is equal to its equilibrium in optimal counterstrategies, and
therefore is the solution of the game. It turns out that by maximally enlarging the
strategic space, a completely classical strategy becomes the solution of the quantum
game! However, this surprising result does not mean that the game is classical again,
because the solution is actually a consequence of the presence of quantum strategies
eliminating other (classical) strategies, which were superior for the restricted sets.

The expected payoffs the players will receive are $A = $B = 2.25, while for all
other strategies both players are ambivalent between the continuous set of symmet-
ric equilibria. This focal equilibrium again is not Pareto optimal, but more efficient
than the classical outcome. Note that the actual achievable payoff in such a game
depends on the set of allowed strategies!

The scheme presented in the preceeding paragraphs applies not only to the pris-
oner’s dilemma, but to any two player binary choice symmetric game. Some other
examples of such classical games and their applications are given in the appendix
A.2.
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2.3 Optics

In this section I will cover the necessary theoretical concepts of linear as well as
non-linear optics, which are indispensable for building a highly efficient source for
entangled photon pairs. It is essential to calculate how to set up the source to op-
timize the collection of down-converted photon pairs as explained in the following
chapter. A necessary treatment of Gaussian beam parameters needed for this calcu-
lation is hence presented. Furthermore, the non-linear process of parametric down
conversion with a classical pump field for the generation of entangled photons is
introduced.

2.3.1 Parameters of Gaussian Beams

In this section, the most important parameters of Gaussian beams are reviewed
[51, 52], and it is shown how they can be manipulated using paraxial optical elements.
The optical wave equation and its solution are given in A.2. Solving the (paraxial)
wave equation (A.1), one obtains the beam intensity

I(x, y, z) = ũũ∗ ∝ e
−ikr2

2
( 1

q̃(z)
− 1

q̃∗(z)
) ∝ e

−2r2

w2 , (2.29)

showing a Gaussian dependence on r (Fig. 2.6).

(r
)

−1 0 1

1/2

1

I /
 I

0

w(z)

r / w(z)

Figure 2.6: Intensity profile of a Gaus-
sian beam.

The transverse scale of the beam de-
fined by the spot size (s. A.2) gives the
distance r = w(z) from the axis of prop-
agation at point z where the intensity has
fallen off to 1/e2, i.e. the amplitude to 1/e,
compared to the axial value at r = 0.

The field pattern of a lowest order
Gaussian beam (Fig. 2.7) is entirely
characterized by the wavelength λ in the
medium and the beam waist w0, which is
defined as the spot size at z = z0 = 0.
There, the reference plane has infinite cur-
vature R0. The propagation law in free
space takes the form

q̃(z) = q̃0 + z = z + izR , (2.30)

where the Rayleigh range zR describes how rapidly a Gaussian beam expands due
to diffraction as it propagates. The radius of curvature R (s. A.2), the spot size w
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and the complex beam parameter q̃(z) at any plane z are related via

1

q̃(z)
=

1

R(z)
− i λ

πw2(z)
. (2.31)

Hence for q̃0, zR and w0 holds the relation

q̃0 = i
πw2

0

λ
= izR . (2.32)

All important beam parameters can be expressed in terms of the waist spot size w0

and the wavelength λ:

w(z) = w0

√
1 +

( z
zR

)2

(2.33)

R(z) = z(1 +
(zR
z

)2

) (2.34)

zR =
πw2

0

λ
. (2.35)

Equation (2.35) fixes the Rayleigh range zR at the distance from the waist where the
beam has increased its diameter by a factor of

√
2, i.e. doubled its aera. Furthermore

it follows that the smaller the waist gets, the more rapidly the beam expands due
to diffraction. The Rayleigh range separates the near-field (Fresnel) and the far
field (Fraunhofer) region, where the beam size expands linearly with distance. For
z À zR, the relation between the waist and the spot size becomes w(z) ≈ w0z

zR
= λz

πw0
.

Defining the beam divergence (i.e. the (half) angular spread) by the diameter at the
radial distance where the optical field amplitude has dropped by 1/e, one determines
the asymptotic angle (Fig. 2.7):

θdiv = lim
z→∞

w(z)

z
=

λ

πw0

(2.36)

The Gaussian-spherical wave solution (A.7) of the paraxial wave equation de-
scribes the properties of a freely propagating TEM00 Gaussian mode25.

ABCD Matrices

Gaussian beams are not only be the eigenfunctions of free space but also of general
paraxial systems (for the paraxial approximation, s. A.2). In geometric optics,

25lowest order Transverse Electric and Magnetic mode
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Figure 2.7: Lowest order Gaussian beam diverging away from its waist [51].

a ray transmitted or reflected by optical elements, such as lenses and mirrors, is
characterized by its radial and angular displacement with respect to the optical
axis of the element. Within the paraxial approximation, the beam parameters of
the incident and the outgoing beam are connected with a linear transformation.
In the matrix formulation of geometric optics (s.[51],[52]), a given optical element
is completely characterized (within the paraxial ray approximation) by the ray-
or ABCD matrix. The matrix elements A,B,C,D contain the paraxial focussing
properties of the optical element. An array of paraxial elements is handled by
multiplying the individual ABCD matrices in reverse order.

For a spherical wavefront with radius of curvature Rin(z) passing through an
arbitrary paraxial system which is specified by its ABCD matrix, the emerging
wavefront will still be spherical and its radius of curvature, Rout(z), can be calculated
for a given ray matrix.

Using the reduced parameter R̂(z) = R(z)/n(z), the complex beam parameter
q̃ becomes

1

q̂
=
n

q̃
=

1

R̂
− iλvac

πw2
, (2.37)

where λvac = λ(z)/n(z) is the wavelength in the vacuum, and λ(z), n(z) the local
wavelength and index of refraction, respectively. The complex Gaussian beam pa-
rameter is defined in this way to obtain the ABCD-law, describing how Gaussian
beams propagate through an arbitrary paraxial optical system. Hence, q̃ can be
transformed by exactly the same law as applied to the radius of curvature R for a
spherical wave using only geometric optics.

The ABCD law of Gaussian beam propagation connecting in- and output
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complex beam parameters reads

q̂out =
Aq̂in +B

Cq̂in +D
. (2.38)

This Gaussian beam transformation rule gives a simple and complete description of
how a beam propagates through (multiple) paraxial elements if their ABCD matri-
ces are known. A material with index of refraction n, length L and surfaces normal
to the direction of beam propagation is characterized by the matrix:

(
1 L/n
0 1

)
. (2.39)

From the law of geometric optics for a thin lens, the ABCD marix writes

(
1 0
−1/f 1

)
. (2.40)

The reflection of a spherical (concave) mirror of radius of curvature R, i.e. focal
length f = R/2, is given by

(
1 0

−2/R 1

)
. (2.41)

2.3.2 Spontaneous Parametric Down Conversion

An interaction of electromagnetic fields with matter will always cause electrical
dipoles to align with some preferred direction in space, which corresponds to a
(change of the) macroscopic polarisation of the crystal

→
P = ε0 (χ

(1)
lin

→
E +

∑

i=x,y,z

χ
(2)
ijk Ej Ek

→
ei + . . . ). (2.42)

The first term describes all linear effects (e.g. dispersion and refraction), while the
second term contains contributions from three-wave mixing and parametric fluores-
cence. As the second order susceptibility χ

(2)
ijk

26 is about ten orders of magnitude

smaller than the first order χ
(1)
lin ≈ 1, non-linear effects are negligible for weak fields

in linear media. However, for a field in special media exhibiting a strong nonlinear-
ity, the polarization does not only depend linearly on the field strength anymore.
For strong light fields in such media non-linear contributions then have to be taken
into account, according to the symmetry of the lattice structure27.

26The second order susceptibility is a non-linear tensor for which the convention to sum over
homonymous indices applies.

27For parametric fluorescence to occur, the lattice of the crystal must not contain centers of
inversion.
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In a crystal with non-linear properties, in our case Beta-Barium Borate (BBO),
with a small probability a high energetic photon splits up into two lower energetic
daughter photons. Beta-Barium Borat (β − BB2O4) is a negative uniaxial crystal,
which means that along the optical axis, the ordinary index of refraction n0 is higher
than the extraordinary index ne

28.
For the generation of polarization entangled photon pairs I will only consider

the effect of spontaneous parametric down conversion (SPDC), which describes the
classically forbidden spontaneous decay of a pump beam photon into so called signal
and idler beam photons. This process has to occur in a non-linear environment to
simultaneously conserve energy and momentum for the decay of a massless particle.
A single atom in the vacuum would therefore suffice for the decay to take place, but
only in a non-linear crystal it is possible that the generated photons are emitted in
different directions as a result of the different indices of refraction. Therefore, the
interaction of the incident pump field with the crystal polarization leading to this
decay can be described by a Hamiltonian containing only non-linear contributions
to the polarization. In first order perturbation theory it is then possible to calculate
the state of the fluorescence modes after some interaction time TC , which turns out
to contain only a vacuum- and a two photon contribution [54]. The interaction time
corresponds to the coherence time of the pump field and was in our case TC ≈ 17
ns (corresponding to a coherence length of 5 m [53]).

In this calculation, one has to distinguish two phase-matching conditions for

the wave vectors of the signal (
→
ks), the idler (

→
ki) and the pump photon (

→
kp): In

type-I parametric fluorescence the two photons generated from an extraordinary
polarized pump beam have ordinary polarization relative to the optical axis. For
type-II fluorescence, one photon is ordinary polarized and the other extraordinary.
In the following I will consider type-II fluorescence, because only for this case one
obtains polarization entangled photon pairs directly from the decay process [55].
Except from this polarization correlation of the two photons created in the decay
process of a pump photon, they are furthermore correlated by the conservation of
energy and momentum [56]:

ωp = ωs + ωi (2.43)
→
kp =

→
ks +

→
ki. (2.44)

Note that these conditions also contain the time-energy correlations of the generated
photons.

For type-II phase-matching, signal and idler photons with equal wavelength are
consequently emitted in two cones, the ordinary and the extraordinary polarized
one [55]. The opening angle of the cones depends on the angle between the optical
axis of the crystal and the pump beam, as well as the indices of refraction which are

28Their wavelength dependence is described by the Sellmeier equations [53].
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different for ordinary and extraordinary polarized photons. For an increasing angle,
the two cones tilt towards the pump beam, and at some point they will overlap, as
shown for the non collinear case in figure 2.8.

Figure 2.8: Emission cones of typ II parametric down conversion in the degenerate case.

As momentum has to be conserved, the two photons of one pair are always
emitted on diametrically opposed sides of the pump beam outside the crystal. The
photons which are emitted along the two intersections do not carry any individual
polarization, it is only known that their polarizations are orthogonal. Therefore, a
photon pair created from a vertically polarized pump photon in the crystal emerging
from the intersection points is in an entangled state [55]:

|ψ〉 = (|HV 〉+ eiϕ|V H〉)/
√
2 (2.45)

The relative phase ϕ between the two terms represents the birefringence in the
non-linear crystal, and can be adjusted as explained in 3.1.

For my experiment, it was furthermore necessary that down converted photons
from the intersection points of two cones with the same wavelength λs + λi = 2λp
are collected. Only in this case - called non-collinear degenerate down conversion -
the photons can be prepared as indistinguishable, which is decisive in our case.

Spontaneous parametric down conversion is currently the most common method
to generate entangled photon pairs [57, 53] as well as multiphoton states [58, 59].
No other method, e.g. atomic cascade decays, seems to be capable of producing as
many entangled photon pairs as it was achieved with parametric down conversion
in non-linear crystals.
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The implementation of the prisoner’s dilemma as a quantum game has already
been sketched in 2.2.3. In this chapter I will describe how the necessary one- and
two-qubit quantum logic gates shown in the schematic quantum network of figure
2.4 can experimentally be realized for pairs of photonic qubits.

In section 3.1 it is described how a highly efficient and compact pair-photon
source was set up to prepare the entangled initial state of the game given in section
2.2.3. The implementation of the player’s strategies as manipulations of the photon’s
polarization is outlined in section 3.2. It is shown how classical as well as quantum
strategies are realized in the actual experiment. To finally be able to determine the
player’s payoffs, it will be necessary to identify all four Bell states with linear optical
elements. How a complete Bell state analysis is achieved for the first time and its
importance for quantum information processing applications is discussed in section
3.3.
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3.1 Initial State Preparation

This section describes how the initial state needed for the quantum version of the
prisoner’s dilemma given in equation (2.18) can be prepared. Since the states de-
scribed in (2.18-2.21) form a complete basis like the Bell states do, there always
exists a transformation between the two sets (s. section 3.2). Hence, it suffices to
initially produce one of the four Bell states and then transform it into the desired
initial state of the game, |ψCC〉 = (|CC〉+ i|DD〉)/

√
2. We will associate the state

|C〉 with the state of a horizontally polarized photon |H〉, and |D〉 with a vertically
polarized photon |V 〉.

Figure 3.1: Initial State Preparation

The aim in this part of the experiment was to set up a compact, highly efficient,
non-collinear degenerate type-II spontaneous parametric down conversion source of
entangled photon pairs to prepare the initial state needed for the quantum version
of the prisoner’s dilemma.

For experiments on foundations of quantum mechanics [19, 27] and the imple-
mentation of quantum information processing tasks, a large number of entangled
photon pairs is required. It has already been mentioned (s. 2.3.2) that sponta-
neous parametric down conversion is the most successful method in this respect,
but still it takes place with a probability of about 10−10 and only scales linearly
with pump power. Therefore, it is important to optimize the collection efficiency to
be able to perform experiments with reasonable counting statistics. Here, it should
be demonstrated that efficient coupling of downconverted photon pairs into single-
mode optical fibers is possible, with a compact, simplified setup, yielding countrates
comparable with highest ones previously achieved [57].

In the following it will be shown how to build a source which fulfills the above
conditions and supplies us with the entangled two-photon state needed for the im-
plementation of the prisoner’s dilemma (s. fig. 3.1).

3.1.1 Guidelines

In principle all you need to generate entangled photon pairs from spontaneous para-
metric fluorescence is a non-linear crystal, a powerful laser to pump the crystal and
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some collection optics.

In my setup a two millimeter long BBO crystal provided the non-linear envi-
ronment for spontaneous parametric down conversion to occur, because BBO shows
a high non-linear coefficient while being transparent in the ultraviolet. The crystal
had an anti-reflective coating for the pump wavelength (351nm) as well as for the
wavelength of the downconverted photons we want to collect (702nm). To realize the
previously introduced non-collinear degenerate down conversion (2.3.2) for 702nm
photons which have just twice of the pump wavelength, the BBO crystal has to
be cut and aligned such that the optical axis and the direction of the pump beam
include an angle of θp = 49.7◦.

Figure 3.2: Spectral angular distribu-
tion, ∆θ, of fluorescence photons.

For this case the surfaces of the cones
intersect under 90◦ (s. fig. 3.2) and hence
the origin of a photon cannot be inferred
from the spectral distribution in both di-
rections, which is also advantageous for ef-
ficient coupling into single-mode fibers [57].
The emission directions (θ, φ) of the down-
conversion photons can be calculated from
their wavelength (for a fixed pump wave-
length) and one obtains, that the opening
angle between the intersections is just 6◦.
To obtain the desired spatially separated
but otherwise indistinguishable entangled
photon pairs, the collection optics images
the crossing points of the cones into fibers.

To pump the non-linear crystal, an
Argon ion laser running at 351nm1 was
used, providing up to 700 mW pump
power. For single (longitudinal) mode se-
lection, an etalon, consisting of an un-
coated plane-parallel, transparent silica
plate, was placed inside the cavity. Ultraviolet pump light is used, because it allows
to produce entangled photon pairs which are very efficiently detectable with Silicon
avalanche photodiodes. The pump beam is vertically polarized. With respect to
the downconversion source that means extraordinary polarized, i.e. the polarization
vector lies in the plane spanned by direction of propagation and the optical axis of
the BBO crystal2.

To select a clean and well defined spatial mode from the intersection points,
it is desirable to couple the down converted light into single mode fibers. Due to

1This corresponds to the transition between two configurations of the 3s23p4(3P )4p electron.
2Consequently, the ordinary polarization vector is perpendicular to the optical axis
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the small core diameter and the profile of the index of refraction of such an optical
fiber, light can only propagate in the TEM00-mode. To couple light efficiently into
the fiber, its modes have to match these boundary conditions. Therefore, the collec-
tion of straylight from the crystal or other luminous sources is strongly suppressed.
Coupling into a fiber also allows more freedom in designing the experimental setup,
because the photons can be transported to any desired position on the optical table
for further processing. Of course, one has to take care that the different phase shifts
and polarization rotations the photons accumulate when travelling through a fiber
are properly compensated for.

The pump beam is supplied by an Ar+-laser, which is a rather expensive device
to purchase as well as to maintain. In the last two years, however, the first blue
diodelasers became commercially available, and as soon as they offer sufficient pump
power in single mode operation together with a well defined spatial mode, they will
allow to build cheap and more compact sources for entangled photon pairs. As a
first step towards taking entangled photon pairs out of a laboratory, it was thus the
aim to set up the source as compact as possible, so that one would just have to
replace the big Ar+-laser by a tiny diode to fit the whole assembly in a portable
box.

3.1.2 Design of the setup

To achieve optimal collection of entangled photon pairs, one has to maximize the
overlap of the two-photon-mode emitted from the crystal and the two single field
mode profiles of the single-mode fibers. The idea is to geometrically match, i.e.
overlap, the pumped region in the non-linear crystal optimally to the target field
mode defined by the Gaussian mode of the fiber with which the photons should be
collected. The mode matching condition for the waist ωp and ω0 of the pump- and
fluorescence mode to allow an optimal observation of the down conversion process
then reads

ωp
!
= w0 . (3.1)

One of the main problems to efficiently collect the downconverted photons is their
broad spectral width. This setup was designed to collect photons from the intersec-
tion points with a spectral width (FWHM) of ∆λ = 4 nm centered around twice
the pump wavelength, i.e. λ = 702 nm. Depending on the spectral width of the
fluorescence photons one can determine the beam waist of the fluorescence mode to
which the pump beam has to be focussed. Because of the wavelength dependence
of the flare angles of the emission cones and the axial symmetry of the intersection
points, photons in the range of λ ±∆λ/2 will propagate from their point of origin
into a solid angle of θ ± ∆θ/2, as shown in figure 3.2. The angular spread of the
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downconverted photons for a given spectral width can be determined from [57]

∆θ =
dθ

dλ
∆λ . (3.2)

The differential angular distribution of parametric fluorescence dθ
dλ

was studied in
[53]. For θp = 49.7◦ and λ = 702 nm, the dispersion properties of BBO lead to
dθ
dλ

= 0.055◦/nm, yielding ∆θ = 0.22◦. Assuming that the fluorescence mode is
Gaussian (for axially symmetric intersection points), it is then possible to calculate
the divergence θdiv of the target mode [57]:

θdiv =
∆θ√
2ln2

= 0.186◦ (3.3)

From equation (2.36), the waist of the fluorescence mode is found to be w0 = 68.5µm.
The corresponding Rayleigh range is zR = 2.1 cm. This target mode has then to
be mapped into single-mode fibers3 with a waist of 2.28µm. To increase the coun-
trates a little further it might be advantageous to choose a slightly lower divergence,
resulting in a bigger Gaussian beam waist. In this way it is possible to compen-
sate for additional divergence due to the angular distribution in the pump beam [57].

With the parameters introduced in section 2.3 and a given focal length of the
coupling optics, one can now calculate where the optical components have to be
placed in order to obtain a fluorescence mode as specified in the above paragraph.

First of all, a telescope was set up to focus the pump beam down from 1mm
to 68.5µm in the BBO crystal (s. fig. 3.3). The waist of the Argon ion laser
beam was taken to be 544 µm (corresponding to a Rayleigh range of 2.65 m for the
Argon ion beam) and the distance from the waist to the first lens of the telescope is
approximately 4 m, determined in a previous experiment [53]. In the ABCD matrix
formalism (equations (2.30) & (2.38)-(2.40)), the distance between the first lens and
the desired waist was calculated for different combinations of lenses (i.e. different
focal lengths). I obtained the minimal value of 42.2 cm (distance between the lenses:
14.8 cm; distance between the second lens and the waist: 27.4 cm ) for a focal length
of 100 mm and 40 mm, respectively. The lenses were set up accordingly and the
crystal was placed at the position of the waist.

Secondly, the distance from the crystal to the single-mode fiber was calculated
analogously for an aspheric lens4 with a focal length of 11 mm. As a result, the
fiber couplers (containing the lens in a thread) and the fiber connector were placed

3FC Single Mode Patch Cable with a cutoff wavelength of 630 nm from Thorlabs (P1-3224-FC)
4Because spherical aberration is dominant (over diffraction) for spherical lenses, it is typically
not possible to achive spot sizes small enough to couple into a fiber. Aspherical lenses are
corrected such that spherical aberration is eliminated. The local spot size is then only limited
by diffraction.
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Figure 3.3: Down Conversion Setup

34.1 cm behind the crystal. The position of the lens in the coupler was adjusted
such that the light from a 702 nm laser diode sent “backwards” through fiber and
lens matches the calculated target mode in the crystal. This can be verified by
measuring the spot size at three positions, from which the waist and its position can
be determined. In the final stages of the experiment it turned out that the distance
between the lens and the fiber is crucial for efficient coupling into a single-mode
fiber. Therefore, our method might not have been precise enough to achive the
optimal count rates. This could be improved by using translation mounts, where
the separation of lens and fiber can be adjusted more accurately, compared to the
mount used (i.e. a screw thread).

The exact orientation of the optical axis of the BBO crystal is found by placing
702nm interference filters in front of the fiber couplers and then tilting the crystal
until the countrate of photons from down conversion is maximal. For first alignment
of the fiber couplers, the diode laser was adjusted such that it travels along the same
path the downconversion photons on the intersections of the cones including an angle

44



3.1 Initial State Preparation

of 6◦ are supposed to take.
The setup was then folded by introducing mirrors as shown in figure 3.3 to get

it as compact as possible. Note that this setup is a simplification of previous ones,
because the four degrees of freedom needed for optimizing the alignment of the fiber
couplers were available through the mirrors and tilting of the fibercoupler mounting.
In prior experiments, a more space consuming array of translation stages was used.

3.1.3 Beam walk-off and state preparation

With the collection optics described above one can very efficiently observe photons
created in the focal region of the single mode fiber. To increase the total count
rate, one might think about using longer non-linear crystals. However, the story
is not that easy due to the birefringence in the non-linear material, which causes a
longitudinal and a transversal walk-off.

Transverse beam walk-off describes the refraction of extraordinary polarized
photons relative to ordinary polarized ones in birefringent media. A beam of or-
dinary polarized photons will therefore be widened by about 70µm per millimeter
crystal length [53] and have an elliptical profile, while the shape of the extraordi-
nary beam remains unchanged. A longer crystal will therefore not necessarilly result
in higher photon count rates due to the transverse beam walk-off which can signifi-
cantly affect the coupling efficiency5. A model describing the influence of the crystal
length on the collection efficiency of entangled photon pairs created in parametric
down conversion is presented in [60].

Photons will also suffer longitudinal walk-off. Inside a BBO crystal horizontal
and vertical polarized photons travel with different speeds of light, since the index
of refraction, n, for the extraordinary polarization (V) is smaller than for ordinary
polarization (H), ne = 1.55 < no = 1.66. An ordinary and an extraordinary po-
larized photon at 702 nm will be separated by 200 fs per millimeter crystal length.
This temporal separation has to be compared with the coherence time of the down-
converted photons which is determined by the bandwidth collected. For the case
that two interfering beams are obtained from a single beam, the relation between
coherence time ∆τc and bandwidth ∆λ is given by [61]:

∆τc∆ν ∼ 1 (3.4)

with ∆ν =
c∆λ

λ2
(3.5)

For a spectral width of ∆λ = 4 nm, the coherence time of the two downconverted
photons becomes ∆τc ∼ 411 fs.

If the temporal separation exceeds the coherence time of the downconverted
photon pair it is possible to distinguish both photons leaving the crystal on the

5In [60] a coupling efficiency of 18% for 3 mm and 29% for 1 mm crystal length was experimentally
obtained.
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basis of their correlation in time and direction of propagation. Then, we cannot
speak of a polarization entangled state anymore because it is possible to determine
the polarization of one photon by its arrival time relative to the other.

As photons are created with equal probability (normalized to pump photon
density) at any position in the crystal, photon pairs generated close to the input
plane of the crystal will suffer a different longitudinal walk-off than pairs created
close to the output plane. The longer the crystal, the bigger the spread in arrival
time of two simultaneously created photons with different polarizations relative to
each other.

To compensate for these beam walk-off effects, a λ/2-plate and a compensation
crystal was placed in both arms behind the crystal. The λ/2-plate is set to 45◦, so
that ordinary polarization is transformed into extraordinary polarization and vice
versa. The same walk off effects as in the pumped BBO crystal then happen in the
compensation crystals, which are BBO crystals as well but only half as long as the
pumped downconversion crystal. Accordingly, due to the transverse walk-off, the
ordinary polarized beam will lie at the center of the widened elliptical extraordinary
beam after having passed the compensation crystal. The temporal displacement will
be compensated on average as well, because photon pairs created close to the input
plane will be shifted in phase just by the opposite amount of pairs created close to
the output plane.

After the compensation of walk-off effects, the photon pair produced in the
BBO crystal can be described by the state (2.45). The relative phase shift ϕ can be
adjusted by tilting one of the compensation crystals. That way it is possible to set
ϕ to any desired value, for example ϕ = 0, resulting in |ψ〉 = (|HV 〉 + |V H〉)/

√
2,

and ϕ = π, yielding |ψ〉 = (|HV 〉 − |V H〉)/
√
2, two of the four Bell states. With a

supplementary half waveplate transforming H into V polarization and vice versa in
one arm it is also possible to produce the other two Bell states.

Therefore, I conclude that this setup is well suited to produce the necessary
entangled initial state of the quantum game. The achieved coupling efficiencies,
photon pair detection rates and entanglement properties of the detected pairs are
presented in section 4.1.
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3.2 Local Unitary Operations

The next step for the realization of the game is the implementation of the player’s
local unitary operation on their respective photon as shown in figure 3.4. As de-
scribed in the preceeding section the players can be supplied with any of the four Bell
states from the downconversion source. This state then has to be transformed into
the initial state |ψCC〉 given in (2.18). Afterwards, Alice and Bob have to be able to
manipulate the photon’s polarization according to their choice of strategy. To de-
termine which state is realized after the polarization manipulations were performed,
one has to be able to identify any of the four possible final states (2.18)-(2.21) corre-
sponding to the entries of the payoff matrix. Therefore, it is necessary to transform
the state into the Bell basis and perform a complete Bell state analysis to determine
the payoffs. The first realization of such a deterministic Bell state analyzer with
linear optical elements will be presented in the following section.

Figure 3.4: Local unitary operations

In general a transformation acting on one qubit can be described by a unitary
2× 2 matrix:

U =

(
a b
c d

)
. (3.6)

Accordingly the basis states |0〉 and |1〉 are transformed into U |0〉 = a|0〉 + b|1〉
and U |1〉 = c|0〉 + d|1〉. In the following, I will represent the components needed
to perform the transformations by unitary operators6. In quantum mechanics the
evolution of (superposition) states (s. section 2.1) is assumed to be unitary if the
state is not interacting with the environment such that the superposition decays into
an incoherent mixture (decoherence). This is of course an idealization, because it
assumes that no particles are lost (non-absorbing components) [62], but shows how
a strategy can be implemented.

6Unitary operations can be seen as the analogue of rotations in the Euclidean space for such
transformations in a Hilbert space.
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In the following, states of the two-qubit system will be represented as vectors

|ψ〉 = k|HAHB〉+ l|HAVB〉+m|VAHB〉+ n|VAVB〉 =




k
l
m
n


 , (3.7)

with A denoting Alice’s and B Bob’s path. As Alice and Bob will only be able
to perform single particle operations on the state |ψ〉, the overall transformation
matrix has to be factorizable into a tensor product of single qubit operations.

First of all, the Bell state from the down conversion source has to be transformed
into the initial state |ψCC〉 (2.18) by single particle operations. The set of all four
Bell states can bijectively be mapped onto the set of the |ψij〉 (2.18-2.21) by applying

for example the operator T † = T †
A⊗T †

B, which can be factorized into T †
A =

(
1 0
0 i

)

und T †
B =

(
1 0
0 1

)
. Operating T † on the Bell state then yields:

T †|Φ+〉 = T †




1
0
0
1


 =




1
0
0
i


 = |ΨCC〉 (3.8)

T †|Φ−〉 = T †




1
0
0
−1


 = (−i)




i
0
0
1


 = (−i)|ΨDD〉 (3.9)

T †|Ψ+〉 = T †




0
1
1
0


 = i




0
−i
1
0


 = i|ΨDC〉 (3.10)

T †|Ψ−〉 = T †




0
1
−1
0


 =




0
1
−i
0


 = |ΨCD〉 . (3.11)

After the operations UA and UB of the players are performed, the resulting state
can then be transformed back into the corresponding Bell states modulo some global

phase. The inverse transformation |Ψij〉 T−→ |BS〉 is simply given by the hermitian

conjugate of the transformation |BS〉 T †−→ |Ψij〉 as T−1 = T †.
In our implementation of a two-player quantum game, the application of the

players operations (UA ⊗ UB) to the initial state of the game |ΨCC〉 (s. figure 3.5)
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Figure 3.5: Local state transformations

is hence realized as operating with the transformation T (UA ⊗ UB)T † on the Bell
state |Φ+〉, obtained from the down conversion source.

The operations T , UA, UB and T † can be experimentally realized with a com-
bination of two λ/4- and a λ/2-waveplate as shown in figure 3.6. With this array
of waveplates it is possible to perform any arbitrary manipulation of the photon’s
polarization. A λ/2-waveplate and a λ/4-waveplate can be represented by

Uλ/2(ϕ) =

(
cos2(ϕ)− sin2(ϕ) sin(2ϕ)

sin(2ϕ) − cos2(ϕ) + sin2(ϕ)

)
and (3.12)

Uλ/4(ϕ) =

(
cos2(ϕ)− i sin2(ϕ) (1

2
+ i

2
) sin(2ϕ)

(1
2
+ i

2
) sin(2ϕ) −i cos2(ϕ) + sin2(ϕ)

)
, (3.13)

where ϕ is the angular setting of the waveplate. Therefore we are not restricted to
implementing all three single qubit operations (T †

i , Ui and Ti) separately, i.e. one
by one. Instead, it is possible to find some angular setting of the waveplates corre-
sponding to any joint operation T (UA⊗UB)T † performing the state transformations
as well as any of the players moves.

For example it is possible to implement the classical operations C and D as well
as the quantum strategy Q (??) in this way. For C and Q, Alice and Bob both have
to apply the operations Uλ/4(0

◦)Uλ/2(0
◦)Uλ/4(0

◦) and Uλ/4(90
◦)Uλ/2(90

◦)Uλ/4(0
◦),

respectively, i.e. set the waveplates to the angles given in parenthesis. Since the
single qubit operations TA and TB for the state transformation are different for Alice
and Bob, it happens that for some strategies Alice will have to apply a different
polarization manipulation than Bob, even though they want to perform the same
move. For example, this is the case for an implementation of the strategy D, where
Alice has to set her waveplates according to Uλ/4(0

◦)Uλ/2(135
◦)Uλ/4(0

◦), while Bob
has to perform Uλ/4(0

◦)Uλ/2(45
◦)Uλ/4(90

◦) to defect as well7.

7This issue could be resolved by a change of basis (for example choosing H and 1√
i
V as a basis in

both Hilbert spaces instead of H and V). Then, however, the matrix representation of strategy
D would contain complex entries. Nevertheless, I will stay with notation used so far, to not
confuse classical and quantum strategies.
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Figure 3.6: Schematic implementation of local unitary operations to perform basis-
transformations and certain strategies for Alice and Bob on the state of the game.

As shown for the transformations (3.8-3.11) any of the four Bell states corre-
sponds to one of the possible final states of the game (2.18-2.21). Hence it suffices
to be able to identify all four Bell states for the payoff determination. Inserting the
values given in the payoff matrix (table 2.5), Alice’s and Bob’s payoff for a given
final state |ψfin〉 after having performed the operations discussed above, is obtained
from

$A = 3|〈φ+|ψfin〉|2 + 0|〈ψ−|ψfin〉|2 + 5|〈ψ+|ψfin〉|2 + 1|〈φ−|ψfin〉|2 (3.14)

$B = 3|〈φ+|ψfin〉|2 + 5|〈ψ−|ψfin〉|2 + 0|〈ψ+|ψfin〉|2 + 1|〈φ−|ψfin〉|2 (3.15)

To perform the quantum game it finally remains to identify all four possible
final states of the game, corresponding to the entries in the payoff matrix. In the
following section it is presented how this can be done.
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3.3 Complete Bell State Analysis

In the last stage of the game we have to implement the “judge”, who determines the
players payoffs, i.e. their punishment. Therefore, the final state of the game has to
be projected onto the basis vectors of the strategic space corresponding to the four
entries in the payoff matrix (s. fig. 2.5). As discussed before (s. section 3.2), we

Figure 3.7: Payoff determination.

therefore have to be able to perform a complete Bell state analysis, because every
Bell state can be identified with exactly one entry in the payoff matrix.

To be able to perform such a complete Bell measurement, we have to set up
a reversible two-qubit gate corresponding to the operator J † in figure 3.7. For a
two-qubit gate, the evolution of one qubit depends on the state of another qubit.
The gate has to project an arbitrary combination of input Bell states, prepared by
the players, onto a complete set of states, which can unambiguously be identified
by a detection signal in the coincidence basis. This could easily be achieved if one
would be able to implement a controlled NOT (also called two-qubit exclusive-OR)
and a Hadamard gate on the two entangled qubits (s. figure 3.8). A Hadamard
gate is a single qubit gate which turns the states |0〉 and |1〉 into (|0〉+ |1〉)/

√
2 and

(|0〉 − |1〉)/
√
2, respectively. A controlled NOT (c-NOT) is a two-qubit gate where

the bit value of the (lower) target qubit is flipped if the (upper) control qubit carries
the logical bit value “1”, and not flipped if it carries “0”, i.e. leaving the control
qubit unchanged.

For quantum computation networks, the controlled NOT plays a decisive role
because it can be shown [6, 7] that the combination of one-qubit gates and the
controlled NOT allows to perform all unitary operations on an arbitrary number of
qubits. Therefore, the c-NOT, together with the single-qubit operations is forming a
set of universal gates. One of the main challenges in quantum information processing
to date therefore is the implementation of the gates needed for a universal quantum
circuit.

An optical implementation of a deterministic controlled NOT gate could be
achieved if a strong non-linear interaction between two photons could be accom-
plished. However, in currently known optical materials, non-linear processes only
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Figure 3.8: 2-Qubit gate consisting of a c-NOT and a Hadamard gate to transform Bell
states (|BS〉) into product states (|PS〉).

occur with a negligible probability for weak light fields, and hence it is highly im-
probable that two photons will interact. However, one can try to achieve the ex-
perimental implementation of photonic quantum gates involving a c-NOT operation
without the requirement of a direct two-photon interaction, using only linear optical
elements8. An idea published by E. Knill, R. Laflamme and G.J. Milburn (KLM)
utilizes auxiliary photons and two-photon interference effects in linear optical net-
works [8].

To implement a c-NOT gate in form of the operator J † for the identification
of all four Bell states with linear optical elements in my experiment, a somewhat
different approach will be followed. Instead of auxiliary photons as in the KLM-
scheme, we will use additional degrees of freedom of the two-qubit state in question.
Therewith, it will be possible for the first time to experimentally demonstrate how
to identify all four polarization Bell states simultaneously in one measurement just
using linear optics.

3.3.1 Distinguishability of Bell States

Until now the identification of only two of the four polarization Bell states was
experimentally demonstrated, for example in the dense coding experiments [13],
where the remaining two Bell states give the same detection result. For Bell states
entangled in the momentum degree of freedom, an analogous interferometric Bell
state analysis has been performed with the same result [63].

For different polarization (or momentum) analysis settings of these interfero-
metric Bell measurements, it is furthermore possible to identify any two Bell states
[64, 13]. In this sense, a “complete” Bell state analysis has been performed before,
but it only works if one is allowed to conditionally measure at least two pairs in
the same given state. However, for the implementation of the prisoner’s dilemma as

8Linear optical elements are devices which can be described by an at most quadratic Hamiltonian
(in the field amplitudes), such as phase shifters, beam splitters, polarizers and mirrors. With
linear optical elements it is possible to produce any linear combination of a unitary operation
performed on a one-photon input state (i. e. arbitrary unitary maps of creation operators).
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well as for other new communication protocols, one has to be able to extract all the
information about the state from a single two-qubit system with one setting of the
measurement apparatus.

J. Calsamiglia and N. Lütkenhaus showed that it is not possible to perform
a von Neumann projection measurement9 on a maximally entangled basis [65, 4].
They conclude that the four polarization Bell states cannot unambiguously be dis-
tinguished using only linear optical elements, and derive an upper bound of 50%
probability of success for a Bell measurement if no auxiliary photons and no condi-
tional measurements10 are allowed for.

The main idea to nevertheless be able to do a complete Bell state analysis with
linear optical elements is to make use of entanglement in more than one degree of
freedom. In principle, entanglement in a particular degree of freedom is as good as in
any other. However, in practice it is most convenient to work with the polarization
degree of freedom, because it is easy to control with off-the-shelf optical components
and robust against decoherence. For photon pairs generated in the process of para-
metric downconversion though, entanglement is not restricted to the polarization
degree of freedom, but one can also make use of their energy-time-entanglement.
When the Bell states are embedded in a higher dimensional Hilbert space, we can
utilize entanglement in the auxiliary degree of freedom with an additional interfer-
ometer.

The supplementary entanglement in the time degree of freedom arises as follows:
In section 3.1 two photons from a parametric down conversion source were said to
be produced “simultaneously”, which means in the sub-picosecond range [66]. The
time at which the first photon is emitted is initially uncertain over an interval as
long as the coherence time of the pump photon the pair is created from. However,
by the point in time when the first photon was emitted, its detection immediatly
determines the position of the other within a very small uncertainty, given by the
optical bandwidth allowed for the photon, resulting in a narrow (in time) coincidence
peak. This can be interpreted as a non-classical correlation in the time (or position)
degree of freedom, analogous to the polarization entanglement of a Bell state [67].

The correlation time11 in our experiment is limited by the bandwidth of the
collected downconverted photons given in section 3.1. It is important to notice that
the correlation time is independent of the coherence time of the incident pump beam
[66, 68]. From the bandwidth of the pump field the coherence time of a pump photon
can be calculated, describing the uncertainty in time of this photon, which does not

9i.e. a measurement for which every classically distinguishable outcome (a combination of detector
clicks) is proportional to a projection on exactly one of the four Bell states.

10i. e. measure one photon and afterwards perform operations on the remaining photons depending
on the measurement outcome.

11By the correlation time conventionally the time delay between the detection of the two photons
is described.
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affect the relative time delay of signal and idler photon. For our down conversion
source, the time interval in which the two photons are produced is exceedingly short
(τC = 411 fs; calculated in section 3.1) compared to the long coherence time of the
pump photon (TC ≈ 17 ns; given in section 2.3.2). From this, it follows that the
downconverted light has a substantial spread in the emitted wavelength, because the
energy of each individual downconverted photon is only imprecisely defined. This
connection of the correlation time and the energy of the created photon pair has to
be distinguished from the similar relation for the incident pump photon. Because of
the relatively small bandwidth of the pump light, the sum of signal and idler photon
energy is very well defined, while the time they were generated is only imprecisely
known. It is this time-energy correlation we will use in the following to perform a
complete Bell state analysis of an EPR-pair from a downconversion source.

This is not a violation of the no-go theorem of Lütkenhaus et al.; it is rather a
circumvention, because the theorem doesn’t apply to states entangled in more than
one degree of freedom.

3.3.2 Embedded Bell state analysis

A setup to actually perform the complete Bell state analysis utilizing the time-
energy correlation explained in the section above was suggested by P. G. Kwiat
and H. Weinfurter in [5]. It is shown in figure 3.9, where the birefringent elements
of the original suggestion are replaced by polarizing beam splitters to delay one
polarization relative to the other.

In the following, I will show how the four Bell states are transformed by the
linear optical components of the setup, and which detector signals are expected for
the different states. As introduced in the preceeding section, I will describe the
components by unitary matrices. This is a simplification which will be used only to
show how the Bell state analyzer works in principle. Effectively, it is possible for the
given setup to compensate for phase shifts between horizontal and vertical polarized
photons beforehand by tilting the compensation crystals in the downconversion setup
and adjusting the relative path difference of the two interferometer arms accordingly.
Generally, the matrix describing an optical element, for example a beam splitter,
has to be determined by measuring its reflectivity, transmittivity and phase shifts.

Hong-Ou-Mandel interference

Firstly, we will interfere the two qubits of the given Bell state at the 50:50 beam
splitter. For the calculation of the state behind the beam splitter I assume that the
phase shift between the transmitted and reflected beam after having passed a beam
splitter is φ = π/2 [62].

In some calculations, it is assumed for simplicity that both polarizations suffer
equal phase shifts when passing the beam splitter [64]. This has led to some con-
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Figure 3.9: Setup for a complete Bell state analysis.

fusion recently, because it is a misleading description of what is actually observed
for light in the reflected arm of (some) beam splitters [69]. Generally speaking, the
relative phase shift for different polarizations depends on the angle of incidence and
the different indices of refraction of the materials the semireflecting layer consists
of, which is normally not revealed by the manufacturer. For a correct identifica-
tion of the Bell states however, it is important to know how polarization is altered
when passing a beam splitter. Therefore, I estimated the relative phase shift be-
tween horizontal and vertical polarization in the output ports of a beam splitter by
shining in +45◦ polarized light and analyzing in ±45◦ in both output ports. For
the reflected arm I observed minimal transmission behind a polarizer set to ap-
proximately +45◦. This means that H and V polarizations must have suffered a
relative phase shift of approximately π, disregarding an overall phase factor which
all beams have in common, and which is thus not relevant in interferometric setups
only sensitive to relative phase. The beam splitter hence transforms +45◦ polar-
ization of the input beam into −45◦ polarization of the reflected output beam. For
the transmitted arm, I observed minimal transmission behind a polarizer set to ap-
proximately −45◦. Hence the polarization must have been almost unaffected by the
beam splitter. These measurements were repeated for different orientations of the
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beam splitter, yielding the same result.

In the following, I will therefore assume that the reflected component of a
horizontally polarized photon will suffer a phase shift of −π/2, while for vertical
polarization the phase shift is π/2. In the experiment it is possible to compensate
for deviations from these values by tilting the compensation crystals in both arms.
A beamsplitter with input modes i and j will hence be represented by the matrix:

Ubs(i, j) =
1√
2




1 −i 0 0
−i 1 0 0
0 0 1 i
0 0 i 1


 (3.16)

I will denote the input modes of the beam splitter by a and b, and the output modes
by a′ and b′ as shown in figure 3.10. Then a photon pair combined on the beam
splitter will be transformed according to




Ha′

Hb′

V a′

V b′


 =

1√
2




1 −i 0 0
−i 1 0 0
0 0 1 i
0 0 i 1







Ha
Hb
V a
V b


 . (3.17)

To calculate how the two photons forming a Bell state, one in each input mode,
superposed on a 50:50 beam splitter, are transformed, we have to write down the
complete states – polarization as well as spatial mode – which have to be completely
symmetric according to the bosonic nature of the system12:

|ψ+〉 =
1

4
(|HV 〉+ |V H〉)(|ab〉+ |ab〉)

|ψ−〉 =
1

4
(|HV 〉 − |V H〉)(|ab〉 − |ab〉)

|φ+〉 =
1

4
(|HH〉+ |V V 〉)(|ab〉+ |ab〉)

|φ−〉 =
1

4
(|HH〉 − |V V 〉)(|ab〉+ |ab〉)

To find out how these states look behind the beamsplitter I apply the operator
Ubs(a, b) for input modes a and b as defined above and disregarding global phase

12This is because now, the particles are not distinguishable anymore by their spatial mode.
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shifts:

Ubs(a, b) |ψ+〉 =
1

2
(|Ha′ V b′〉+ |Hb′ V a′〉+ |V a′ Hb′〉+ |V b′ Ha′〉)

Ubs(a, b) |ψ−〉 =
1

2
(|Ha′ V a′〉 − |Hb′ V b′〉+ |V a′ Ha′〉 − |V b′ Hb′〉)

Ubs(a, b) |φ+〉 =
1

2
(|Ha′ Ha′〉 − |Hb′ Hb′〉 − |V a′ V a′〉 − |V b′ V b′〉)

Ubs(a, b) |φ−〉 =
1

2
(|Ha′ Ha′〉+ |Hb′ Hb′〉+ |V a′ V a′〉+ |V b′ V b′〉)

Obviously, only for the |ψ+〉 as input state one will observe the two photons in
different spatial output modes a′ and b′. For all other Bell states, both photons will
be found in the same output mode a′ or b′. By the detection signal behind the first
beam splitter one can therefore distinguish the |ψ+〉 from the other three Bell states.

Figure 3.10: Beam splitter: a and b denote the input modes for photons coming from
the downconversion, a′ and b′ denote the output modes. In the experiment a detector
will be placed in mode b′ directly behind the beamsplitter, while in the other arm further
processing is performed.

C. K. Hong, Z. Y. Ou and L. Mandel were the first to discover this interference
effect of signal and idler photons created in parametric down conversion [70]. It
was demonstrated [71] by increasing the coherence time of the two photons that the
interference of detection events behind the beam splitter can be understood as the
interference of probability amplitudes of the two photon state and not as interfer-
ence of individual photons. Later on, this effect was used in many experiments to
distinguish between two of the four Bell states [13, 72]. If the two beams from the
down conversion source (section 3.1) travelling on two different paths a and b are
recombined on a beam splitter, their spatial mode behind the beam splitter and a
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polarization measurement (i.e. a polarizing beam splitter and two detectors in at
least one of the output arms) in the coincidence basis suffices to identify any two of
the four Bell states. Remarkably, this effect cannot be used to distinguish between
the states of the game given in equations ??, because the |ψCD〉 and |ψDC〉 states
will result in the same detection signal.

In order to observe this Hong-Ou-Mandel (HOM) effect in an experiment, one
has to take care that the two distinguishable input photons are indistinguishable
after they have passed the beam splitter.

To optimize this spatial mode matching, two conditions have to be fulfilled: The
photons have to travel along the exact same path behind the beam splitter, and their
wavefront curvature has to be equal. To optimally overlap the two paths determined
by the output fiber couplers behind the downconversion, one needs four degrees of
freedom for adjustment. One of the beams is taken as reference and the other can
then be adjusted by horizontally and vertically tilting and moving (with translation
stages) the coupler in x- and y-directions. A different divergence of the two input
modes would also allow to identify the input path of each photon by its wavefront
curvature. Therefore it was tried to adjust the beams such that they are both
collimated, i.e. the spot size remains unchanged over a distance of approximately
five meters. To achieve better control over this important parameter, it might be
advantageous to use more accurately adjustable fiber mounts in the future.

Furthermore, the spectra of both photons have to be equal, and it must not be
possible to identify them by their polarization. Also the distance between the BBO
crystal and the beam splitter has to be made equal to within the correlation length
of the down conversion photons, for them to arrive within their correlation time at
the beam splitter. For this purpose, one of the output fiber couplers is mounted on a
(motorized) translation stage to accurately align the relative path length difference
between the two arms.

As long as the relative time delay between the photons arriving at the beam
splitter is distinctly bigger than the correlation time, the number of observed coin-
cidences is determined by

Ncoinc = Ncoinc,0(r
2 + t2) . (3.18)

Therein, Ncoinc,0 is the coincidence rate which is observed without the beam splitter
in the beamline, and r and t are the reflectivity and transmittivity for amplitudes,
respectively. If the photons arrive at the beam splitter within their correlation
time, the coincidence rate is observed to drop down or peak up depending on how
the respective Bell state behaves at the beam splitter13, resulting in the so called

13For a first path length alignment independent of the input state one can search for the position
of the dip by placing horizontally adjusted polarizers between the fiber coupler and the beam
splitter. If two horizontally polarized photons are superposed on the beam splitter, they will
show the same behavior as the Bell states.
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Hong-Ou-Mandel-dip (for the |ψ−, |φ+〉 and |φ−〉) or -bump (for the |ψ+〉).
In case not all of the above mode matching conditions are fulfilled, or if the

reflectivity and transmittivity of the beam splitter are not equal to 50%, the HOM-
dip cannot be expected to drop down to zero.

The asymmetric interferometer

Having identified one of the Bell states (the ψ+) by the observation of HOM-
interference, it remains to identify the other three. Note that in the setup shown
in figure 3.9 it is only possible to identify the remaining three Bell states in one
output port of the beam splitter. Hence, I will in the following only consider one
output mode. The events where the two photons are emitted in the other ouput
mode will not be recorded as a coincidence, because both photons will hit the same
detector, giving a signal which cannot be distinguished from a single-photon event.
This is not a loss of universality for the ability to distinguish between all four Bell
states, but it will cause not all events to be detected. By building the the same
setup in both arms this issue would be resolved, however at the expense of more
optical components, detectors and a more complex coincidence logic.

In accordance with the considerations made for the beam splitter in the previous
paragraph, I will represent a polarizing beam splitter (PBS) by the unitary operator

Upbs(i, j) =




1 0 0 0
0 1 0 0
0 0 0 i
0 0 i 0


 . (3.19)

Denoting the output modes of a polarizing beam splitter by l and s corresponding
to the long and short arm of the asymmetric interferometer shown in figure 3.3, one
obtains the states after the photon pair has passed the beam splitter and the two
polarizing beam splitters (global phase factors disregarded):

Upbs(s, l) Upbs(a
′) Ubs(a, b) |ψ−〉 =

1

2
(|Hs V l〉+ |V l Hs〉)

Upbs(s, l) Upbs(a
′) Ubs(a, b) |φ+〉 =

1

2
(|Hs Hs〉+ |V l V l〉)

Upbs(s, l) Upbs(a
′) Ubs(a, b) |φ−〉 =

1

2
(|Hs Hs〉 − |V l V l〉)

For this calculation, the relative phase between horizontally and vertically polarized
photons was set to π. In the experiment this relative phase will depend on the
path length difference between the long and the short arm of the interferometer. To
obtain the states as calculated above, it will be necessary to stabilize the path lenth
difference of the interferometer arms at a value according to the phase setting of
zero (modulo 2π). For an arbitrary unknown phase (or fluctuations of the phase) it
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will not be possible to distinguish between the |φ+〉 and |φ−〉 states.

The polarizing beam splitters separate vertically polarized photons going the
long path from horizontally polarized ones going the short path by the time ∆t.
Hence, a vertically polarized photon will always be delayed with respect to a hor-
izontally polarized photon. In this way it is possible to distinguish the remaining
|ψ−〉 from the two |φ〉-states, because only the |ψ−〉 will result in two photons which
are separated in time behind the interferometer. For the |φ〉-states, the photons will
always either both travel the long arm of the interferometer or both the short arm,
and hence arrive at the detectors simultaneously in any case. To be able to resolve
if two photons arrive simultaneously (i.e. within the tiny jitter of detector signals
and the spread in time of signal and idler photon generation) or separated in time,
the delay line has to be long enough to electronically distinguish between the two
possibilities. In our case the long path will be approximately one meter longer than
the short path, corresponding to a separation in time of roughly 3 ns. Accordingly,
also the coincidence window has to be set such that the temporally separated events
give a different coincidence detection event than simultaneously arriving photons,
i.e. it has to be shorter than half of the temporal separation between horizontally
and vertically polarized photons.

Identification of |φ+〉 and |φ−〉

The identification of the two |ψ〉-states as described in the preceeding two paragraphs
is a variation of previous implementations of Bell state analyzers (e.g. the one in
[13]). In this paragraph it will now be shown how to go beyond these previous exper-
iments, exploiting the new possibilities of the additional time-energy-entanglement.

For the complete Bell measurement, it remains to distinguish between the two
|φ〉-states. The idea is to analyze the state in the +45◦/ − 45◦-basis, because then
coherence of detection events is restored, and the information about which of the
probability amplitudes led to the coincident detection is lost. Therefore, the photons
are sent through a λ/2-waveplate, described by the matrix (3.12), set to 22.5◦,
transforming horizontal and vertical into |+ 45◦〉 = (|H〉+ |V 〉)/

√
2 and | − 45◦〉 =

(|H〉 − |V 〉)/
√
2 polarization, respectively. In the H/V basis the state behind λ/2-

waveplate then reads:

Uλ/2(22.5
◦) Upbs(s, l) Upbs(a

′) Ubs(a, b) |φ+〉 =
1
4
(|Hs Hs〉+ |Hs V s〉+ |V s Hs〉+ |V s V s〉
+|Hl Hl〉 − |Hl V l〉 − |V l Hl〉+ |V l V l〉)

Uλ/2(22.5
◦) Upbs(s, l) Upbs(a

′) Ubs(a, b) |φ−〉 =
1
4
(|Hs Hs〉+ |Hs V s〉+ |V s Hs〉+ |V s V s〉
−|Hl Hl〉+ |Hl V l〉+ |V l Hl〉 − |V l V l〉)
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For photon pairs generated in parametric down conversion, one has the same
probability for such states to be produced at any time within the coherence length,
defining the relative separation, within which two photons can still interfere. Con-
sequently, one can separate the temporal degree of freedom, distinguishing between
photon pairs having taken the long or the short path, from the polarization degree
of freedom. Then, interference of the probability amplitudes for detection events of
two photon pairs at different points in time, t and t+∆t, is observed as long as ∆t
does not exceed the coherence time of the pump photon from which they originate
[67]. Therefore the delay line has to be shorter than the coherence time of the pump
field, ∆t < TC . The upper bound of TC ≈ 17 ns for photons from the pump beam
used here is in our case clearly longer than the delay line of approximately three
nanoseconds.

Polarization analysis with a polarizing beam splitter then yields states being
detected at time t in the output ports corresponding to H and V polarization:

Upbs(a
′) Uλ/2(22.5

◦) Upbs(s, l) Upbs(a
′) Ubs(a, b) |φ+〉 =

1

2
(|H H〉 − |V V 〉) |t, t〉

Upbs(a
′) Uλ/2(22.5

◦) Upbs(s, l) Upbs(a
′) Ubs(a, b) |φ−〉 =

1

2
(|H V 〉+ |V H〉) |t, t〉

Finally, we obtain that the |φ+〉 and |φ−〉 behave differently at the polarizing beam
splitter after the λ/2-waveplate. The |φ−〉 will split up at the polarizing beam
splitter and hence always lead to a coincidence detection event, while for the |φ+〉
both photons are emitted into the same output port. For comparison a similar
calculation for the |ψ−〉 leads to

Upbs(a
′) Uλ/2(22.5

◦) Upbs(s, l) Upbs(a
′) Ubs(a, b) |ψ−〉 =

1

4
(|H H〉 − |V V 〉 − |H V 〉+ |V H〉) |t, t+∆t〉.

To detect the |φ+〉 one has to able to verify both photons emitted into the same
output port of the polarizing beam splitter. In principle a detector distinguishing
between one and two photons would be the optimal solution. However, such detec-
tors are currently not commercially available for visible light. Since photomultiplier
tubes are capable of resolving the photon number for higher energetic light, work is
in progress to achieve the same for the low energy regime and hence this might be an
option in the future. Also, kryogenic solid-state detectors were reported to be able
to resolve photon numbers, but are not available to civil customers commercially. A
different approach are the so called (fiber) loop detectors, where a multi-photon state
is sent through a fiber loop with an adjustable ratio coupler [73, 74] or an optical
switch and a weak coupler [75] connecting the input, the loop and the output to the
actual detector. First experiments in this direction where performed demonstrating
a proof of principle, but they are not yet in a stage to be used as standard detector
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modules. The main problem for this detectors still is the limited one-photon detec-
tion efficiency. Instead of these photon number resolving detectors, there is still a
conceptionally different methode to realize the identification of the |φ+〉 and |φ−〉
states with the proposed setup, by using an antisymmetric pump beam [76, 77].

However, the simplest technique to register two photons in the same spatial
mode is simply to use an additional beam splitter and two detectors instead of
one as shown in figure 3.9. If the two photons are leaving the polarizing beam
splitter through the same output port, it will be possible in half of the cases to
identify one reflected and one transmitted photon in two detectors behind the 50:50
beam splitters. For all other cases the two photons are either both transmitted or
both reflected and then absorbed simultaneously by the same detector. Such events
are not distinguishable from the detection of single-photon events and will hence
not appear in any coincidence statistics. Of course, it would be possible to further
increase the number two-photon coincidence detections by using more beam splitters
and detectors, but in excess to the unacceptably rising expenses for detectors, the
coincidence logic would also become increasingly complex.

To summarize, it is possible to identify all four Bell states and to determine the
players payoffs by the detection event observed with the presented setup (s.figure
3.9). But the probability amplitudes of the detection events are found to vary de-
pending on the Bell state to be observed. Not taking the single-photon detection
efficiencies into account (which are probably below 40% for the detectors used) one
finds that the |ψ+〉 has a probability of 100% to arrive at two different detectors,
because it is the only Bell state splitting up in the HOM-interferometer. The proba-
bility amplitudes for the |φ−〉 after processing suggest that it can be identified with
a probability of 50%, which could be increased to 100% by having the same setup
in both arms. The |ψ−〉 and |φ+〉 have lower probabilities, 37.5% and 25% respec-
tively, for both photons to arrive at different detectors, because of the inability to
unambiguously distinguish between one and two photon (Fock) states. A simple
improvement of the current setup, requiring only a polarizing beam splitter and an
additional detector before detector D1 (s. figure 3.9), would allow to identify the
|ψ−〉 states with a probability of 75% in total. One can think of further improve-
ments of the same type, however, the gain in detection probability is only possible
at the increasing expense of detectors needed.

62



3.3 Complete Bell State Analysis

Figure 3.11: Experimental setup
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Figure 3.12: Photography of Experimental Setup
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4 Experiment

4.1 Characterization of the Photon Pair Source

As a first step I tried to adjust the setup such that the intersection directions (s.
section 3.1) are mapped into the fibers. Using 702 nm interference filters, I aligned
the mirrors and fibercouplers such that maximal single and coincidence count rates
are obtained. ’Single count rate’ denotes the detection rate of one detector regis-
tering photons indepently of finding another (downconverted) photon. This rate is
expected to show a pronounced maximum in the intersection directions, twice as
high as anywhere else on the 702 nm cones, since signal and idler light contributes
here. The rate of detecting two photons, one in each collected mode within some
coincidence time window set by the experimentator (for the results presented in
this section it was set to 21 ns) is then referred to as ’coincidence rate’. From the
discussion in section 3.1, this rate is also expected to be maximal in the intersection
directions.

With the - in this sense - optimally aligned setup it was possible to produce
about 800 photon pairs per milliwatt per second for the two millimeter long BBO
crystal1. Typically coincidence/single count rate ratios of about 25− 27% were ob-
tained. We used (passively quenched) silicon avalanche photodetectors, which have
a recharge time of about 1 µs after the detection of a photon event, and hence
they show significant saturation effects when the single count rates exceed 100 000
counts per second. In this regime the coincidence count rates don’t scale linear with
the pump power anymore however, even without actively quenched diodes (having
smaller recharge times and therefore lower saturation effects) the source yields coin-
cidence count rates comparable with the brightest cw-sources currently in operation.

The entangled initial state of the game produced in the process of spontaneous
parametric down conversion (s. 2.3.2) has to be carried by two photons of the exact
same wavelength in order to be indistinguishable as required for the observation of
two-photon interference. If their wavelength distribution would be shifted relative
to each other, the HOM-interference will not be optimal, because one could identify
the input mode of each photon behind the beamsplitter by its wavelength. It turned
out that the spectra obtained from the down conversion source aligned for maximal
count rates (without the interference filters) were shifted by about 4 nm relative
to each other. Hence, the setup was realigned monitoring the wavelength with a
grating spectrometer and finally I obtained the spectra shown in figure 4.1. For
the detected photons travelling through the spectrometer which were detected in
coincidence with a second one in the other arm, the spectral width is determined by
a Gaussian fit to data points:

(∆λ)exp = 4.6 nm (4.1)

1This value was obtained after realignment without the interference filters
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Figure 4.1: Single and coincidence spectra of down conversion photons in both arms
behind the BBO crystal. For the singles background counts are substracted.

This bandwidth corresponds to a correlation time of the downconverted photons
of (∆τC)exp = 357 fs. It is slightly above the value the setup was designed for (s.
section 3.1) which could indicate that the alignment of the setup is not entirely
optimal.

As mentioned in sections 2.3.2 and 3.1 the downconversion source produces
photons in the state given by equation (2.45). To generate any of the four Bell
states from (2.45), one has to perform phase shifts and polarization rotations on
only one of the two photons (s. sections 2.1.2 and 3.1) accordingly. Since we
couple the downconversion light into single mode fibers which can cause arbitrary
polarization modifications and birefringence, one has to properly compensate for
these effects. With polarization controller units2 it is possible to “neutralize” an
optical fiber modulo a 2π relative phase shift beween H and V polarization. These
units allow controlled polarization manipulations comparable to the chain of λ/4-
and λ/2-waveplates presented in section 3.2. To prepare the initial Bell state of the
game, i.e. the φ+, we have to rotate the polarization of one of the downconverted
photons by 90◦ and set the phase in equation (2.45) to ϕ = 0◦. This can be done
by either neutralizing both fibers and then rotate the polarization in one arm with

2Polarization controllers are also referred to as “bat ears” or in the Austrian and Bavarian lan-
guage area they bear the tuneful name “Ohrwaschl-Geräte”.
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a λ/2-waveplate set to 45◦, or neutralizing just one of the fibers and adjust the
polarization controllers in the other fiber such that the setting corresponds to a
λ/2-waveplate set to 45◦.

To neutralize a fiber, I placed one polarizer in front of the input fiber coupler
and another one with perpendicular setting behind the output coupler. By setting
the three loops of the controller unit accordingly, one can minimize the count rates
for say horizontal input polarization. In this way it is ascertained that the fiber
transforms a horizontal polarized photon into horizontal polarized one. To compen-
sate a relative phase shift between horizontal and vertical polarization, one then
can switch to the +45◦/− 45◦-degree basis and repeat the minimization procedure.
As this will in general change the properties of the fiber for horizontal polarization
adjusted before, one has to switch between both bases and iteratively set the loops
as independent as possible for each basis (e.g. always try to minimize the count
rates with the same two of the three loops for one basis). To adjust the polarization
controller such that it acts as a half waveplate, the procedure is the same, only the
polarizer settings have to be changed accordingly. With this technique I was able
to adjust the polarization controllers such that less then 0.2% of the photons de-
tected with parallel polarizers were observed for a perpendicular setting of the two
polarizers. This is assumed to be sufficient for our purpose, because it corresponds
to less than ten coincidences per second above the dark count rate, which has to be
compared with 6000 coincidences when the polarizers are removed.

However, maintaining the polarization3 when passing through a fiber is not
enough to prepare the desired state, because the relative phase between both arms
has to be fixed to obtain the desired Bell state. In principle this can also be achieved
with the polarization controller units but then it is difficult to ascertain that the
phase shift between horizontal and vertical polarization is equal to zero and not
n 2π, with integer n. Therefore, this relative phase shift is easily and accurately
set by tilting the compensation crystals (s. section 3.1), as they cause phase shifts
between horizontal and vertical polarization.

4.1.1 Polarization Correlations

To ascertain that I really produced the desired state, I analyzed the state behind
the fibers in the H/V and +45◦/− 45◦ basis with a polarizer in both arms as shown
in figure 4.2. Then it is possible with two measurements (1. both polarizers analyze
in H/V basis; 2. both polarizers analyze in P = +45◦/M = −45◦ basis) to identify

3Maintenance of the polarization here means that H, V, +45◦ and −45◦ polarized input photons
will also be detected with the respective polarization after the fiber. No polarization is damped
out, as it is the case for the commercially available ’polarization maintaining’ fibers.
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Figure 4.2: With this setup it is possible to prepare any of the four Bell states and mea-
sure its polarization correlations, a violation of the CHSH inequality and the entanglement
witness for respective polarizer and waveplate settings.

any of the four Bell states:

|ψ+〉 = 1√
2
(|HV 〉+ |V H〉) =

1√
2
(|PP 〉 − |MM〉)

|ψ−〉 = 1√
2
(|HV 〉 − |V H〉) =

1√
2
(|MP 〉 − |PM〉)

|φ+〉 = 1√
2
(|HH〉+ |V V 〉) =

1√
2
(|PP 〉+ |MM〉)

|φ−〉 = 1√
2
(|HH〉 − |V V 〉) =

1√
2
(|MP 〉+ |PM〉).

It is this method of identification which is most commonly used to characterize
the correlations between the polarizations of a photon pair. To record the polariza-
tion correlation functions, i.e. the expectation value Eα,β = 〈σασβ〉 for polarization
measurements of the two photons at angles α and β, polarizers are placed in both
arms behind the source (s. figure 4.2). Firstly, one polarizer is set to 0◦ which corre-
sponds to the case that only horizontal polarized photons can pass. Then, the other
polarizer is rotated by 360◦ in steps of ten degrees and the coincidences between the
detectors in both arms within one second are counted.

To characterize the quality of the polarization correlations, the visibilities of
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the sinusoidal pattern can be used:

V =
nmax − nmin
nmax + nmin

(4.2)

Experimental values for V are obtained from a sinusoidal fit of the function

fij(φ) =
a

2

(
1− Vij sin

(
φ− φ0

p

))
(4.3)

to the measured data points. The angular setting of the rotating polarizer is referred
to as φ, the amplitude of the function corresponding to the coincidence count rate is
termed a, p determines the periodicity of the function (p = 360

4π
for fij(φ) = sin(φ/p)),

and ij denotes the measurement basis.
The observed sinusoidal dependence on the orientation of the polarizers is shown

in figure 4.3 and proves with a visibility of VH/V = 95.6± 0.6% that, if one photon
of a pair is vertically polarized, the other is found to be horizontally polarized and
vice versa. However, this does not prove that the photon pair is in an entangled
state, because the state ψ = (|HV 〉〈HV | + |V H〉〈V H|)/

√
2, which is a statistical

mixture, would show the same behavior.
The peculiarity of entangled states is that they show these correlations inde-

pendent of the measurement basis. To verify that the produced state is entangled,
we therefore checked the correlations also for the P/M basis (one polarizer set to
P = +45◦) and the L/R basis (one polarizer set to P = +45◦ preceeded by a λ/4
waveplate set to 0◦ in both arms). Again, we observe sinusoidal curves (figure 4.3)
with visibilities of VP/M = 96.2± 0.7% and VL/R = 96.9± 0.6%, which no separable
state could reproduce. The product state considered before would for example show
a completely flat curve if one of the polarizers is set to P = +45◦.

For the measurements presented above, we observed single detector count rates
ND1 and ND2 of approximately 40000 and 65000 per second. Also the single count
rates showed a (much less pronounced) sinusoidal variation when rotating the polar-
izer, because of the different beam walk-off effects for unequal polarizations described
in 3.1. These single detector clicks are assumed to be randomly distributed in time,
and will hence cause accidental coincidences for some given time window in which
one click in each detector leads to an event which is counted as a coincidence. As
long as the single count rates are below the inverse of the coincidence time win-
dow, which was set to τcoinc = 21 ns in our case, one can calculate the number of
accidental coincidences from the two independent single count rates via

Nacc = ND1ND2τcoinc . (4.4)

For the measurement of the polarization correlations, one obtains Nacc = 54.6 s−1.
Subtracting the accidental coincidences from the measured rates yields the visibili-
ties:
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Figure 4.3: Polarization correlations for different settings of analyzer 1.

VH/V = 97.4± 0.6%, VP/M = 98.3± 0.8% and VL/R = 98.8± 0.6%.

These results are a proof for non-classical correlations between the two photons of
one pair.

4.1.2 Violation of Bell’s inequality

Another test if the created photon pairs show quantum correlations is to test for
a violation of the CHSH inequality (2.6). To calculate S(α, α′, β, β ′), we have to
determine the expectation values of E(i, j) (s. section 2.1). For each particle P = a, b
and analyzer setting ϕ = α, α′, β, β ′, three measurement outcomes are possible:

Pϕ =





+1 “spin up” particle a, b
−1 “spin down” particle a, b
0 particle a, b not detected

“Spin up” and “spin down” correspond in our case to orthogonal polarizations, ϕ
and ϕperp, and not to opposite directions. Hence we expect maximal violation of the
inequality for angles α = 0◦, α′ = 45◦, β = 22.5◦ and β′ = 67.5◦. For a given state
ψ, the expectation values of the product of ai and bj can be written as

E(i, j) =

∫
〈ai(ψ)〉〈bj(ψ)〉dρ. (4.5)
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To determine the expectation value for the settings (i, j) = (α, β) we have to perform
four coincidence measurements for given bases α, α⊥ for particle a, and β, β⊥ for
particle b, yielding the four possible combinations:

HHHHa
b α (+1) α⊥ (-1)

β (+1) nαβ nα⊥β
β⊥ (-1) nαβ⊥ nα⊥β⊥

Then, we can calculate the expectation value

E(α, β) =
nαβ − nα⊥β − nαβ⊥ + nα⊥β⊥
nαβ + nα⊥β + nαβ⊥ + nα⊥β⊥

. (4.6)

The signs in the numerator correspond to the product of the measurement outcomes
of particle a and b for respective angular settings.

To calculate the standard deviation ∆S =
√∑

i,j(∆E(i, j))2 of S(α, α′, β, β ′)

one has to compute the standard deviations via standard error propagation tech-
niques assuming independent errors on the individual measurements

∆E(i, j) =

√√√√
∑

k,l

(
∂E(i, j)

∂nk,l

)2

(∆nk,l)2 (4.7)

of the expectation values E(i, j), with i = α, α′, j = β, β ′ and k = i, i⊥, l = j, j⊥.
The standard deviation of the nk,l counted events is assumed to be Poisson dis-
tributed: ∆nk,l =

√
nk,l.

The results nk,l of the measurements performed on a φ+-state from the downcon-
version source are given in table 4.1. Inserting the values of table 4.1 into equations

HHHHHa
b

α = 0◦ (+1) α⊥ = 90◦ (-1) α′ = 45◦ (+1) α′
⊥ = 135◦ (-1)

β = 22.5◦ (+1) 24582 4020 23617 5340
β⊥ = 112.5◦ (-1) 6280 25965 3435 28643
β′ = 67.5◦ (+1) 3850 23959 21616 5670
β′
⊥ = 157.5◦ (-1) 27466 5056 5264 28827

Table 4.1: Coincidence count rates in 5s for measurement settings corresponding to a
maximal violation of the CHSH inequality.
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4.6 and 4.7, we obtain
S = 2.722± 0.006. (4.8)

Inequality (2.6) (SCl ≤ 2) was violated by 122 standard deviations in 5 seconds
integration time per angular setting and the maximal value of Sqm = 2

√
2 predicted

by quantum mechanics was almost reached.
Within the 5 s measurement time for each angular setting, an average of 304 000
and 190 000 singles were detected in detectors D1 and D2, respectively. These
single events lead - as described before for the polarization correlation functions -
to 242.6 accidental coincidences within the time of data collection. Subtracting the
accidental coincidences from the measured total count rates and repeating the above
calculation yields

S = 2.766± 0.006, (4.9)

corresponding to a violation of Bell’s inequality by 130 standard deviations in 5
s per angular setting.

4.1.3 Entanglement witness

Yet another method to detect entanglement was presented in section 2.1.3. Given
the case that one is aiming at producing some particular state — as in our case,
where we wish to produce the φ+ — one can construct an entanglement witness W
and measure if one succeeded [38]. To find out what we actually have to measure to
determine the value of Tr(Wρ), we use the witness operator as defined in equation
(2.12). With Tr(A + B) = Tr(A) + Tr(B) and the invariance of the trace under
basis transformations, one obtains:

Tr(Wρ) =
∑

i,j

〈ij| 1
2
(|HV 〉〈HV |+ |V H〉〈V H| − |PP 〉〈PP | − |MM〉〈MM |

+ |LL〉〈LL|+ |RR〉〈RR|) ρ |ij〉

=
1

2

(∑

i,j

〈ij|HV 〉〈HV |ρ|ij〉+
∑

i,j

〈ij|V H〉〈V H|ρ|ij〉 −
∑

i,j

〈ij|PP 〉〈PP |ρ|ij〉

−
∑

i,j

〈ij|MM〉〈MM |ρ|ij〉+
∑

i,j

〈ij|LL〉〈LL|ρ|ij〉+
∑

i,j

〈ij|RR〉〈RR|ρ|ij〉
)

=
1

2
(〈HV |ρ|HV 〉+ 〈V H|ρ|V H〉 − 〈PP |ρ|PP 〉 − 〈MM |ρ|MM〉
+ 〈LL|ρ|LL〉+ 〈RR|ρ|RR〉).

To determine the expectation values, I performed the corresponding measurements
in the three different bases. Only three measurements are required when four detec-
tors, waveplates and two polarizing beamsplitters are available. Any combination
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of two detectors behind a polarizing beamsplitter can be associated with one of the
basis vectors. Since I was only using two detectors I performed four measurements
in each basis for the four possible combinations of two polarizers in front of the
detectors. The results are given in table 4.2.

Pol. A Pol. B Coinc. Sing. A Sing. B acc. Coinc.

H H 28300 340 k 172 k 246
H V 771 340 k 206 k 294
V H 296 271 k 172 k 196
V V 27857 273 k 213 k 244

P P 25053 310 k 180 k 234
P M 534 312 k 201 k 263
M P 623 299 k 180 k 226
M M 30662 301 k 204 k 258

R R 431 301 k 184 k 233
R L 28396 302 k 196 k 249
L R 25701 301 k 183 k 231
L L 1060 302 k 197 k 250

Table 4.2: Coincidence and Single count rates and accidental coincidences in 5s for mea-
surement settings of polarizers in arm A and B to calculate the entanglement witness.

Calculating the necessary expectation values from table 4.2, we determine

Tr(Wρ) = −0.467± 0.001. (4.10)

This corresponds to a probability p of 95.6% of really having created the desired
φ+-state in accordance with the assumptions made in 2.1.3. This probability accords
to the visibilities obtained from the polarization correlation curves, where (1 − p)
corresponds to the count rates in the minima of the curves. From the single count
rates, one can calculate the number of accidental coincidences for the coincidence
time window, which was again set to 21 ns. Subtracting the accidental coincidences
from all measured coincidences in 5 s yields

Tr(Wρ) = −0.480± 0.001. (4.11)

The probability p of having created the φ+-state then becomes 97.3%.

From the obtained count rates, the recorded spectra, the visibilities of the po-
larization correlation curves, the violation of the CHSH inequality and the measure-
ment of the entanglement witness I conclude that it is possible with our source to
produce highly entangled photon pairs at a high rate, which fulfill the constraints
on the initial state formulated in the preceeding sections 3.1 and 3.3.
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4.2 The Hong-Ou-Mandel Dip

After the players performed their operations on their respective photon, the final
state of the game is sent to the complete Bell state analyzer. As explained in section
3.3 and shown in figure 3.9, the two photons are superposed on the beam splitter
in order to distinguish the |ψ+〉 from the other three Bell states by virtue of Hong-
Ou-Mandel (HOM) interference.

To observe the HOM interference effect, the coincidence rate was measured as
a function of the relative path length difference ∆l between the two arms of the
down conversion crystal to the beam splitter. Therefore, one of the fiber couplers
behind the down conversion was mounted on a motor-driven translation stage and
displaced in the direction of the beam. This changes the distance from the coupler
to the beam splitter and hence the relative path length difference between the two
arms.

When the distance ∆l is close to zero the coincidence count rate drops to a few
percent of the rate in the wings of the HOM-dip, as shown in figure 4.4 for a |ψ−〉
being the input state4.

Figure 4.4: Hong-Ou-Mandel interference on a beam splitter for a |ψ−〉 input state.

On the abscissa the position of the fiber coupler is displayed. The zero-position
is just the starting position of the motor and does not mark the position of equal
pathlength difference here. The motor position ∆z where both photons travel the

4To ensure that the input state in fact is the |ψ−〉 we performed a measurement of the polarization
correlations with the setup shown in figure 4.2 before sending the photons to the beam splitter.
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same distance from their origin to the beam splitter is defined by the minimum of
the dip.

For the Bell state analysis, the fiber coupler has to be set to the exact minimum
position ∆z0. A displacement from this position in the experiment would cause a
|ψ−〉 (in this case) to be identified as a |ψ+〉. Analogously, the other two Bell states
|φ−〉 and |φ+〉 showing destructive interference at the beam splitter would cause a
similar misidentification of Bell states. For optimal alignment of the fiber coupler,
the minimum position was obtained by fitting a Gaussian function to the data points:

f(x) = a e−
(∆z−∆z0)

2

w2 + y0 (4.12)

Here, a denotes the (negative) amplitude of the dip compared to the coincidence
count ratevalue y0 far out in the wings. According to equation (4.2), the visibility
can be calculated from a and y0 analogously and is obtained to be Vdip(ψ

−) =
95.3 ±0.8%. The visibility gives a lower bound on the number of wrongly identified
coincidence events.

Figure 4.5: Hong-Ou-Mandel dip for the |ψ−〉.

The width w of the dip (equation 4.12) determines the correlation time [70] and
was found to be 99.4 ± 1.6 µm. This corresponds to a correlation time of the down
converted photons of w

c
= (∆τC)dip = 331.6 ± 5.3 fs, which is in good agreement

with the value obtained from the spectra in the previous section. Via equations (3.4-
3.5) the collected bandwidth can then be estimated as ∆λ ≈ 5 nm. This indicates
as well (s. section 4.1) that that the alignment of the down conversion source could
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still be optimized, because it was initially designed for 4 nm.

To show how the |ψ+〉 can be distinguished from the other three Bell states, we
measured the HOM-interference for all four Bell states. This is of course inherent
in analyzing all four Bell states with the setup discussed in section 3.3, however, for
(online) alignment of the setup it is advantageous to place only two fiber couplers in
both output ports of the beam splitter and couple into single mode fibers connected
to the detectors.

For the purpose of demonstrating the complete Bell measurement, the down
conversion source was adjusted such that |ψ−〉 is obtained as an initial state mea-
sured behind a λ/2- and a λ/4-waveplate in one arm, both set to 0◦. By adjusting
the waveplates we are able to implement first strategies of a quantum game, which
here correspond to switching between the four Bell states. The resulting HOM-dip
after alignment of the spatial overlap as discussed in section 3.3 is shown in figure
4.5. The visibility of Vψ+ = 90 ± 0.2 % is again obtained by a Gaussian fit.

By setting the λ/4-waveplate to 90◦ and leaving the λ/2-plate unchanged one
can switch from |ψ−〉 to |ψ+〉 and observes the HOM-bump as expected from the
calculation in section 3.3. The bump is shown in figure 4.6 and has a visibility
(calculated for a→ −a) of Vψ+ = 92.8 ± 0.2 %.

Figure 4.6: Hong-Ou-Mandel bump for the |ψ+〉.

If the λ/4-waveplate remains at 90◦ but the λ/2-plate is set to 45◦, one has
prepared |φ+〉. Here, the visibility of the HOM-dip was found to be Vφ+ = 80 ±0.2 %.
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Figure 4.7: Hong-Ou-Mandel dip for the |φ+〉.

The fourth Bell state is then obtained by switching the λ/4-plate back to 0◦.
Again, a HOM-dip is observed with a visibility of Vφ− = 82.1 ± 0.2 %.

All of the last four measurements presented above were performed in one run,
one after the other, just by switching the waveplate settings and hence switching
between the Bell states. This way it was ensured that the state to start with from
down conversion did not change due to experimental drifts. The setup was not
realigned in between any two measurements.

Compared to the first measurement of |ψ−〉 presented in the beginning of this
section the visibilities in this measurement are lower, for the |φ〉-states even by
10 − 15%. In the first measurement the alignment was similar as in the last four
except from the fact that only one waveplate (the λ/2) was placed in one of the
arms. Introducing the second waveplate therefore seems to have slightly influenced
the quality of the spatial mode, for example caused by beam walk-off, and hence the
visibility of the dip. The significantly lower visibilities for the |φ〉-states could be
due to a wedge of the λ/4-waveplate. During the alignment of the setup, i.e. before
measuring the dip for the |ψ−〉, the waveplate was set to 0◦. For |φ〉 states, it had
to be rotated by 90◦, and hence a wedge could significantly affect the spatial mode.

However, as already discussed in section 3.3, there might as well be other im-
perfections which will affect the correlations between the photons and lead to a
reduced dip visibility. We observed for example that the spectra of the collected
down conversion light was subject to slight drifts, because the beam pointing of the
pump light was not entirely stable (even for active beam lock in the laser system
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Figure 4.8: Hong-Ou-Mandel dip for the |φ−〉.

used5). In some cases fluctuations of about 20% in the single (and hence also the co-
incidence) count rates were observed on a time scale of roughly 15 minutes. If these
fluctuations are due to a decrease in coupling efficiency (and not output power), the
beam might not always point at the same spot in the crystal, which in turn would
also affect the collected center wavelength. Another reason could be a remaining
temporal distinguishability of the photons as discussed in section 3.1.

Among the imperfections reducing the visibility of the observed HOM-interference
patterns, spatial mode matching seems to be the main problem. In previous experi-
ments [63] it was observed as well that it is crucial to select the photons with equal
wave vector in both arms to obtain high dip visibilities. Hence, we coupled the down
conversion photons into single-mode fibers to select one well defined mode. We were
able to couple approximately 90% of the photons observed with a multi-mode fiber
into a single-mode fiber, and in this case we also obtained the maximally achieved
dip visibilities shown in figure 4.4.

In the experiment only one of the modes will be coupled into a single mode
fiber, while in the other arm the photons are processed for the further state analysis
and will then be directly incident on a freestanding detector. Therefore, it will be
important for an improvement of the experimental results to adjust curvature and
diameter of the beams at the output couplers as accurately as possible to fulfill the
mode matching conditions given in 3.3.

Nevertheless, the observed Hong-Ou-Mandel interference clearly shows a differ-

5Spectral Physics
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ent behavior (constructive interference resulting in the HOM-bump; figure 4.6) for
the |ψ+〉 than for the other three Bell states (destructive interference resulting in
the HOM-dips; figures 4.5-4.8). Further processing of these states is presented in
the following chapter.
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4.3 Identification of Bell States

4.3.1 The Interferometer

The interferometer needed for the temporal separation of horizontally and vertically
polarized photons in order to be able to identify the |ψ−〉 is realized as a folded
asymmetric Mach-Zehnder interferometer instead of the open one shown in figure
3.9. The processing of the input states is the same, but a folded Mach-Zehnder
interferometer is easier to align and probably more stable, because one needs only
a single polarizing beam splitter (and two retroreflecting prisms, which compensate
for alignment angle errors in one direction as a cat-eye, and therefore we found them
to be less critical than beam splitters in terms of stability).

The relative pathlength difference between the two arms of the interferometer
determines the relative phase shift a vertically polarized photon suffers relative to a
horizontally polarized one. As discussed in section 3.3, this relative phase shift has
to be set to a fixed value for the correct identification of the |φ〉 states. However,
this phase shift might not be stable due to vibrations and long term drifts of the
components, namely the prism and the polarizing beam splitter positions. Even
air flow suffices to change the optical pathlength of the interferometer-arms and
therefore also the relative phase.

Hence, it is necessary to stabilize the distance between the components of the
interferometer to an accuracy of less than 0.035λ = 25 nm to allow for an error of
maximally 5%. This is achieved with a configuration shown in figure 4.9. The 45◦

polarized beam of a Helium-Neon (He-Ne) laser is aligned such that it travels about
1 cm below the beamline of the photons from the down conversion source. Behind
the interferometer, the He-Ne beam is analyzed in the +45◦/ − 45◦-basis. For this
purpose the recombined beams are sent through a λ/2-waveplate set to 22.5◦ and
a polarizing beam splitter. For detection in the +45◦/− 45◦-basis it is not possible
anymore to infer the interferometer arm a photon of the adjustment laser took
by its polarization, and interference from the two different paths is observed with
standard PIN photodiodes in each of the output ports. The interference patterns on
both photodiodes will be shifted in phase by π relative to each other and hence the
observed photocurrent difference can be used as an error signal to control the path
length difference. The obtained error signal is fed into a controller, which regulates
the high-voltage for a piezoceramic-translator, adjusting the position of one of the
prism mounts and thereby closing the feedback loop [78].

The stability of the interferometer under measurement conditions locked to the
He-Ne reference laser can be estimated from figure 4.10. The observed variations of
the count rates due to phase shifts over approximately 15 minutes are still rather
large, i.e. up to 50% of the count rate. This noise will accordingly affect the qual-
ity of the measurement results. The observed phase instabilities could mainly be
tracked down to the mechanical response of the setup to vibrations caused by the
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Figure 4.9: Setup of the intererometer: the HeNe-beam (broken line) is displaced about
1 cm in height relative to the path of the downconverted photons (solid line). Prism 1
is mounted on a micrometer-driven translation stage to adjust beam overlap, prism 2 on
piezo-driven translation stage to adjust the phase.

watercooling system of the Argon-ion laser. To prevent these fluctuations, more
stable mounts for the prisms and the polarizing beam splitter seem to be necessary.
Furthermore, it would help to decrease the integration time constant of the con-
troller to be able to compensate for faster fluctuations than currently possible.

However, it is not enough to just keep the phase as stable as possible, one also
needs to be able to set it to the value desired for the Bell measurement. To achieve
this, a microscope objective slide (glass plate, 1 mm thick) was introduced into the
He-Ne reference beam in one of the interferometer arms (s. figure 4.9).

By tilting that glass plate, one can adjust the pathlength difference of the refer-
ence beam. The controller will try to keep this distance constant and hence change
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Figure 4.10: Totaled count rates per second of all detector combinations corresponding
to one of the four Bell states. The data was collected in approximately fifteen minutes,
showing the long term stability of the interferometer. (Only 360 datapoints (sec) were
recorded in this time because the readout and plotting takes about 1 − 2.5 seconds per
datapoint.) The input state was a |φ−〉.

the relative phase for the down conversion photons travelling along the different
paths.

To find the right setting of the glass plate for the experiment, we chose the |φ+〉
as input state for the Bell state analyzer and observed the coincidence count rates
for detector combinations which are identified with the two |φ〉 states. Changing the
relative phase between the long and short arm of the interferometer continuously
changes the relative phase between horizontal and vertical polarization. Accord-
ingly, |φ+〉 can be transformed into |φ−〉 and hence give a detection signal which
would be expected from the calculation presented in section 3.3 for |φ−〉 as shown
in figure 4.11. For a known input state (determined independently, for example by
its polarization correlations) it is thus possible to find the position of the glassplate
corresponding to the phase shift which was assumed for the calculation in 3.3, and
allows for a correct assignment of detection events to input states.

However, from the curves presented in figure 4.11 it is also apparent that it is
indeed possible to distinguish between the different detection signals expected for
the two |φ〉–states. Final results on the complete Bell state analysis will be presented
in the following section.
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Figure 4.11: Dependence of the count rates for all combinations of detectors correspond-
ing to |φ+〉 and |φ−〉 states on the interferometer path length difference. This corresponds
to scanning the relative phase between the two arms; the input state for this run was a
|φ+〉.

4.3.2 The Detector Module

For the detection of the photons after they travelled through the setup we use silicon
avalanche photodiodes (APD) from Perkin-Elmer (formerly EG&G Optoelectronics)
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[79],[80]. An APD basicly consists of an absorption region and a multiplication
region (s. figure A.1). If an incident photon is absorbed, an electron-hole pair is
created. To separate the photo-generated electrons from the holes in the absorption
region, a relatively weak electric field is applied to attract the electrons towards
the multiplication region, where a high electric field causes an avalache by impact
ionization.

For single photon counting the detectors are biased approximately 15 V above
their breakdown voltage. In this so-called Geiger mode, even a single photoelectron
or a thermally generated one may cause an avalanche pulse which discharges the
diode slightly below the breakdown voltage. The quantum efficiency for 702 nm
photons is typically around 70%, while the photoelectron detection probability in
the Geiger mode is increasing with reverse bias voltage and reaches approximatly
55% at 20 Volts above the breakthrough voltage. The photon detection probability
is given by the product of the quantum efficiency and the photoelectron detection
probability and reaches roughly 40% in our case.

When an avalanche is triggered, the process has to be suppressed before the
current flowing through the device destroys the APD. Hence one has to quench the
avalanche, and after some recovery time reactivate the diode by raising the excess
bias voltage above the breakdown voltage. To do so we are using a passive quenching
circuit, where the APD is connected in series with a large quench resisitor and a
small series resistor. When the diode is in the conducting state after an avalanche
was triggered by either a photo- or thermal electron, a suffiently large current, to
maintain the cunductive state is supplied by parasitic capacitances for a short time.
If the current through the diode drops below the so-called latching current, the
APD switches to the non-conducting state and recharges with the time constant
τ = CpRq ≈ 0.6µs, where Cp ≈ 1.6 pF is the stray- and junction capacitance of
the APD. For a large quenching resistor the diode will normally be in the non-
conducting state. The width of the breakdown pulse depends on the bias voltage
and the capacitances and is in our case about 2ns at Ubias = 15V . (For applications
of single-photon avalanche diodes, e.g in quantum cryptography, see [81].)

An important parameter of a detector is its dark count rate, which is deter-
mined by the rate an avalanche is triggered by bulk carriers generated in thermal,
tunneling or trapping processes. For the detectors I used the dark count rates, de-
pending on the temperature at which they are operated, are given in figure A.3.
The thermal noise in the detector was minimized by cooling the block in which the
detector is mounted. Under experimental conditions we observed dark count rates
of approximately 1500 single events per second which did not lead to an observable
amount of accidental coincidences.

As shown in figure 3.11, four of the detectors were mounted in one detector
module together with the polarizing beam splitter and the two 50:50 beam splitters
for the final state analysis. The module is very compact and it turned out to be
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relatively easy to align as a whole. Inside the module the detectors are mounted in
two blocks which are cooled by Peltier elements. All detectors are placed at an equal
optical path length from the polarizing beam splitter. The three beam splitters were
aligned beforehand such that the images of all four detectors overlap when viewed
in the direction of the input beam. A picture of the detector module is shown in
figure 4.12

Figure 4.12: Photograph of Detector Module.

The pulses from the detectors when an avalanche was triggered were converted
(s. figure A.2) into a NIM signal6 and stretched to a width of 15 ns, and then sent
to a coincidence unit described in the next section.

To verify the pathlength difference of the interferometer arms we recorded the
coincidences for different detector combinations for an arbitrary input state. In
figure 4.13, the detectors are denoted by the polarization observed in the output
ports of the polarizing beam splitter. The data was recorded with an oscilloscope
registering the relative time delay of two detector clicks. It is observed that pho-
tons with equal polarization arrive approximately simultaneously at the detectors,

6Logical “0” and “1” correspond to voltages of 0 V and -1 V, respectively, on a 50Ω terminating
resistor.
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because the photons took the same path in the interferometer. For perpendicular
polarization the photons have travelled through different arms of the interferometer
and hence the vertically polarized one arrives delayed at the detector with respect
to the other. From the temporal separation of the two peaks, i.e. 3.4 ns, the path
length difference is obtained to be 101.9 cm.
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Figure 4.13: Coincidence count rates for two combinations of detectors. The combination
of two H detectors corresponds to two photons having travelled the short arm of the
interferometer. For the combination of H and V, one photon (V) has travelled the long
interferometer arm and the other (H) the the short.

The coincidence peaks shown in figure 4.13 are larger than it would be expected
from the correlation time τC (s. section 3.3). This is due to the time resolution of the
detectors and the processing of the detector signals until recorded by the oscilloscope.

Furthermore, the wings of the peaks seemed to be rather broad. Therefore, we
analyzed this feature by shining in ambient light and observed the coincidences for
different detector pairs; an example is given in figure 4.14. The observed peaks at
∆t = ±5 ns are caused by optical crosstalk between two detectors. If a shutter
is placed in front of one of the detectors no such peak is observed, verifying that
the peak was not caused by electronical crosstalk. The peaks can be explained by
the breakdown flash of the photodiodes. When a photon strikes the detector and
triggers an avalanche, about 10-100 photons will be emitted in the breakdown flash,
which then freely propagate in the detector module and eventually strike another
detector, for example after they are reflected from one of the surfaces of the optical
components. In [82] the effect was studied in more detail and a fluorescence intensity
spectrum as function of the wavelength of the photons emitted in a breakdown flash
is given. The emission is maximal for 850 nm photons and does not show significant
contributions at 702 nm. Short-pass filters could here be used to cut off the main
contributions from photons emitted in breakdown flashes.
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Figure 4.14: Observation of optical crosstalk between detectors 3 and 5. The high back-
ground is due to straylight.

To check if the beam splitters show an (optimal) ratio of reflectivity to trans-
mittivity of approximately 1, a polarizer was rotated in front of the module. The
observed single count rates of all four detectors are shown in figure 4.15. Both beam
splitters deviate from the optimal behavior but the probability for a pair to split
up depends only weakly on the ratio of reflectivity to transmittivity and hence the
influence on the measurement results will be negligible.

Figure 4.15: Count rates for the four detectors inside the detector module when a po-
larizer in front of the module is rotated.
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4.3.3 The Coincidence Unit

So far it was presented how the Bell state analysis works assuming that it is possible
to distinguish between the different coincidence detection events. Hence, the exper-
iment also requires a coincidence logic which converts the signals from the detectors
into an output signal telling us which of the Bell states the input signal corresponded
to.

The requirements for this coincidence unit are that it needs to be able to distin-
guish between simultaneously arriving input signals from two detectors (for |ψ+〉-,
|φ+〉- and |φ−〉-events) and signals which arrive with a temporal separation (for
|ψ−〉-events). Thereby, the temporal separation is determined by the path length
difference of the interferometer arms, which was measured to be ∆t = 3.4 ns (s.
section 4.3.2). Furthermore, the coincidence time window must be shorter than half
of this separation to unambiguosly distinguish photons arriving simultaneously or
with a relative delay. Since the down conversion source produces photon pairs at
a high rate (s. section 4.1), the coincidence unit should also be able to process
these events fast enough, in order not to loose coincidence events registered by the
detectors.

To meet these requirements, a fast ten-fold coincidence unit was built which can
be read out by a PC. A schematic diagram of the logic and its key elements is shown
in figure 4.16. Although only five detectors are used in the actual experiment, we will
need ten signals for the processing to distinguish temporally separated coincidence
detection events from simultaneous detector clicks.

detector 5
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1≥

/ 2cτ
delay

2 ns

5 ns

τ  =

τ =

fanout
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sample

FIFO PCregister

1
2
3
4
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Figure 4.16: Schematic diagram of the 10–fold coincidence unit

89



4 Experiment

The NIM signals from the detector module are first fed into a fanout, where
the signal is copied. One of the copies is then sent through a short NIM cable,
while another copy has to travel through a longer cable. Essentially, the length-
difference between the two cables should correspond to the temporal separation
with which simultaneously created photons travelling through different arms of the
interferometer arrive at the detectors. However, due to the commercial availability
of integer valued NIM cables, the temporal delay of two pulses from one fanout unit
at the detector in our case was 3 ns instead of ∆t = 3.4 ns. A simple improvement
will therefore be to shorten the long arm of the interferometer by about 6 cm to
synchronize the optical and electronic delays.

If one of the inputs of the coincidence unit for the delayed copies from the
fanouts changes its logical state as a consequence of a detector event, the whole
pattern of the ten detector inputs (delayed and undelayed copies) is sampled into
a register after some well defined time delay τC/2. This time delay corresponds to
half of the coincidence time window τC and can be adjusted. For our purpose τC
was set to ∼ 1.5 ns.

The difference between a signal from one of the detectors arriving early or
late at the fanouts should be equal to (or at least lie within the coincidence time
window τC) the relative delay of two signals from one fanout. In this case, detector
signals arriving at the fanouts with an according temporal separation will lead to
a different sampled pattern than signals arriving simultaneously, as shown in figure
4.17. Consider for example the identification of a |ψ−〉: The horizontally polarized
photon will travel the short arm of the interferometer, while the vertically polarized
one will travel the long path. Hence, the horizontally polarized photon will arrive
earlier at a detector. Then its delayed copy from the fanout will cause the logical
OR gate (denoted by ≥ 1 in figure 4.16) to send to the register a sample command
after a time delay of τC/2. By the time this signal reaches the register to initiate
the sampling, the vertically polarized photon will have travelled the longer path and
will be detected. However, one of its copies which had to pass through the longer
NIM cable will not have had time to reach the register before the sampling is done.
The sampling pattern given in the upper part of figure 4.17 will then be written to
the register.

If the two photons arrive simultaneously (as it is the case for the other three
Bell states) at two different detectors, one of their delayed detector signals will start
the sampling, but in this case also the delayed copy of the other signal will have time
to reach the register before the sampling is done (lower part of figure 4.17). This
results in a sampled pattern which is different from the above case, and therefore
will allow to distinguish between the |ψ−〉 and the other three Bell states.

In each case the sampled pattern will contain the information which detector
sent a signal, and when the signal was sent relative to other detector events. These
patterns are then written to an event buffer (the FIFO) which only takes 15 ns to
store the data before the next event can be recorded. In this way it is ascertained
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Figure 4.17: Sample patterns for detection events at different times (above) and at the
same time (below).

that no events are lost up to high single-event rates. From the buffer the raw-data
(i.e. the patterns) can be read out by a high-speed digital input card into the PC
for the event-histogramming. This readout may for some time also take place at a
slower rate. The average event rate for the unit is limited by the digital input card
to approximately 106 events per second.

This ten-fold coincidence unit was used for the collection of the data presented
in the following. It fulfills all of the requirements formulated in the beginning of
this section and will therefore allow to distinguish between the different detection
events of the four Bell states according to figure 4.18.
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Figure 4.18: According to the calculation performed in section 3.3 one kann identify Bell
states with the coincidence detection events. Here Di denotes a detector which will click
later than another detector Dj .
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4.4 Results of a Complete Bell measurement

For the implementation of a quantum game it is necessary to be able to distinguish
between all four Bell states (sections 3.2 and 3.3). To show that a complete Bell
measurement is possible with the presented setup, a dense coding protocol was real-
ized. This protocol demonstrates how more than one bit of information can be sent
by manipulating only one qubit. Different from previous implementations of dense
coding protocols [13], it was shown here for the first time that it is experimentally
possible to transmit one of four possible messages by manipulating only one qubit
of an entangled pair.

As in the case of the observation of HOM-interference the down conversion was
set such that the state |ψ−〉 can be observed behind a combination of one λ/2- and
one λ/4-waveplate in one arm, both set to 0◦. This was verified by measuring the
polarization correlations (s. section 4.1) right after the waveplates in one and the
fiber coupler in the other arm. By setting the angles of the waveplates, one can
prepare all other Bell states, which are then incident on the first beam splitter in
the setup for the complete Bell state analysis. Then, the measurements of the HOM-
interference presented in in section 4.2 were performed and the position of the fiber
coupler was fixed at the point where the coincidence rate was maximal for the |ψ+〉,
and minimal for the other three Bell states. For a defined input state (|φ+〉 or |φ−〉),
we aligned the glass plate in the interferometer such that only the combinations
of detectors given in table 4.18 (corresponding to the input state) show maximal
count rates, while minimal count rates are observed for the other combinations. In
this way, the same relative phase as assumed in the calculation in section 3.3 is
obtained, which is important to identify the |φ+〉 and the |φ−〉 states (the |ψ〉 states
are unaffected by a change of the relative phase difference of horizontal and vertical
polarization behind the interferometer).

Then, we measured the coincidence events per second for all possible combina-
tions of two detectors for four settings of the waveplates. For the initial setting, i.e.
both waveplates set to 0◦, the |ψ−〉 is transmitted to the Bell state analyzer and we
obtain the coincidence count rates given in figure 4.19. The count rates displayed
over a measurement time of 30 s are obtained by adding up the coincidence events of
all detector combinations corresponding to the identification of the same Bell state.

Then the λ/4-plate was set to 90◦ and the measurement was repeated. Now the
|ψ+〉 should be observable. The experimental results from the Bell state analyzer
are given in figure 4.20.

Similar the remaining two Bell states were prpared by setting the λ/2-waveplate
to 45◦, and then switching the λ/4-plate between 0◦ for the |φ−〉 and 90◦ for the
|φ+〉. The experimental results for 30 s of measurement time are given in figures
4.21 and 4.22, respectively.

As mentioned in section 3.3, the probabilities to be able to detect either one
of the Bell states are different for every Bell state. Namely a probability of 100%
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Figure 4.19: Totaled count rates per second of all detector combinations corresponding
to one of the four Bell states for the |ψ−〉 as input state.

Figure 4.20: Totaled count rates per second of all detector combinations corresponding
to one of the four Bell states for the |ψ+〉 as input state. The pronounced dip is caused
by some electronic crosstalk which we could not completely get rid of.
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Figure 4.21: Totaled count rates per second of all detector combinations corresponding
to one of the four Bell states for the |φ−〉 as input state.

Figure 4.22: Totaled count rates per second of all detector combinations corresponding
to one of the four Bell states for the |φ+〉 as input state.
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was only obtained for finding the |ψ+〉, while the other three Bell states have lower
detection efficiencies: 50% for the |φ−〉, 37.5% for the |ψ−〉, and only 25% for the
|φ+〉. As explained in 3.3, this is due to the different possibilities of two-photon
states in one spatial mode splitting up at beamsplitters. Taking this into account
by multiplying the measured count rates with the inverse of the probabilities, the
final results (within this work) are obtained for the Bell state analyzer, shown in
figures 4.23-4.26.
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Figure 4.23: Totaled coincidence count rates recorded over 30 seconds for all four Bell
states. Input state for the Bell state analyzer was the |ψ−〉. The count rates have been
multiplied by the inverse of the probabilities to compensate for different detection efficien-
cies of the four Bell states.

The results show that the Bell state analyzer reliably identifies the |ψ−〉 and
the |ψ+〉. For the two |φ〉 states the input state was found with a higher probability
than any other Bell state. However, the background was rather high for these states.

The observed background for all of the four Bell states is mainly due to deficien-
cies in the stabilization of the interferometer and the deviations of the HOM-dip or
-bump visibilities from the optimal value of 100%. From the raw data presented in
figures 4.19-4.22 it is apparent that the coincidence count rates are subject to rather
large variations (up to 50%) of the count rates. These fluctuations are probably
caused by instabilities in the interferometer. To enhance the stability I suggest to
improve the mechanical mounting of the polarizing beam splitter and to optimize
the integration time constant of the controller, as discussed in section 4.3.1. In par-
ticular it should thereby be possible to increase the reliability of the identification of
the |φ〉 states, which crucially depends on the phase stability of the interferometer
(s. sections 3.3 and 4.3.1).

Another approach to improve the quality of the results is to achieve higher
visibilities in the observation of HOM-interference. As observed in section 4.2, the
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Figure 4.24: Totaled coincidence count rates recorded over 30 seconds for all four Bell
states with an input state |ψ+〉. The count rates have again been multiplied by the inverse
of the probabilities.
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Figure 4.25: Totaled coincidence count rates recorded over 30 seconds for all four Bell
states. Input state for the Bell state analyzer was the |φ−〉. The count rates have again
been multiplied by the inverse of the probabilities.

visibilities for the |φ〉 states were about ten percent lower than for the |ψ〉 states,
which is surely one of the reasons for the higher background observed for the |φ〉
states. Also for the |ψ−〉 identification, a higher background of detection signals
corresponding to Bell states different from the input state was found compared to
the case of the |ψ+〉. This could be an artifact of the higher visibility of the HOM-
bump compared to the HOM-dips presented in section 4.2.

Certainly an improvement of the HOM-interference, which crucially depends
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Figure 4.26: Totaled coincidence count rates recorded over 30 seconds for all four Bell
states. Input state for the Bell state analyzer was the |φ+〉. The count rates have again
been multiplied by the inverse of the probabilities.

on spatial mode matching, as mentioned in sections 3.3 and 4.2, would lead to
a better reliability of the Bell measurement. It should also be checked that the
different HOM-interference visibilities are correlated with different settings of the
waveplates, because wedges of the plates would lead to a reduced quality of the mode
matching. This would somehow complicate the implementation of the prisoner’s
dilemma, because for such an experiment many more waveplates are needed for the
realization of different strategies.
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Within the scope of this thesis it has for the first time been demonstrated how
a complete Bell state measurement can be realized. A simple non-trivial network
of quantum logic gates has been implemented with linear optical elements. The
presented setup will allow the realization of new quantum information processing
protocols, in particular the first implementation of a quantum game.

Quantum game theory emerged from a combination of quantum information
theory and the theory of games, which are both concerned with the communication
of information. For the implementation of the quantum version of a classical example
of game theory, the prisoner’s dilemma, it is necessary to provide the players with
an entangled initial state on which they will have to perform quantum strategies to
obtain a new solution to the classically unsolvable game [44]. Subsequently, it has
to be possible to determine the benefits of the players, which in this case requires
the identification of all states of a maximally entangled basis.

To generate the entangled initial state of the game, a compact and highly ef-
ficient parametric down conversion source for entangled photon pairs was set up.
Measurements of the polarization correlations, a violation of a Bell inequality and
the entanglement witness verified that the collected photons are highly entangled.

For the first complete polarization Bell state measurement with linear optical
elements it was made use of entanglement in higher dimensional state spaces [5].
This idea should be considered as an extension of the proposal of Knill, Laflamme
and Milburn, who need auxiliary photons (ancillas) for their universal quantum logic
operations [8].

As a first protocol where a complete analysis of all four polarization Bell states
was performed, an optimal dense coding scheme has been realized. It was shown that
the Bell states |ψ−〉 and |ψ+〉 could reliably be identified. However, the identification
of the |φ−〉 and |φ+〉 still suffers from high background. Ideas how to improve the
setup to increase the quality of the experimental data are given along the text.

This experiment can be understood as the first step towards the implementation
of the prisoner’s dilemma. Yet, for the current setup only one player is actively able
to perform strategic moves, which may be quantum as well, while the other remains
completely passive. For one player, first quantum strategies on an entangled initial
state have been performed and it was shown how to arrive at classically unaccessable
final states.
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The obtained results demonstrate that it is possible to identify all four Bell
states with linear optical elements. After an improvement of the reliability of the
complete Bell state measurement, the implementation of the prisoner’s dilemma is
straightforward. Minor modifications of the current setup will also allow to imple-
ment new and improved protocols for efficient quantum communication tasks as well
as quantum versions of other well known two-player games.

One might now hope to use the complete Bell state analysis presented here to
implement improved teleportation schemes. However, the efficiency of teleportation
schemes that have been implemented to date [72] will not benefit from this Bell
state analyzer because the necessary time-energy correlations which are made use
of are not present in qubits from different sources. For long coherence times (cw
pumped sources) it is not very probable that two photons from independent cre-
ation processes will be generated simultaneously and for pulsed pumped sources the
coherence time is too short to implement the analyzer.

To conclude I will give a short outlook on quantum game theory, which was the
motivation for this thesis.

In the last years many classical games have been generalized to quantum games.
It was found that quantum strategies and entanglement provide new solutions to
classical unsolvable game situations similar to problems in quantum communication.
Since many mathematical problems can be reformulated as games, it was suggested
that quantum games might help to find new quantum algorithms.

For future experiments it might be interesting to consider what new possibilities
arise if entanglement of multi-particle states is allowed for in multiplayer games.
For example the Prisoner’s dilemma can be extended to the case of three (or more)
players, which is possible to implement [83, 84] using the GHZ- [85] or the W-state
[86]. More multiplayer (multiparticle) games, like Vaidman’s Game [87, 88] may
also be interesting to study.

What hasn’t been looked into in very much detail until now is what new possi-
bilities quantum rules offer in iterated games, where the player’s actions can depend
on the past behavior of the other players. For the classical prisoner’s dilemma it
was shown in computer tournaments that the best strategy is “tit for tat”1. First
ideas on optimal strategies in repeated quantum games are published in [91, 92].

Most applications of game theory in science have focussed on biology, at the
macroscopic scale analyzing the behavior of species or individual decision makers.
However, a very different perspective on quantum games has been triggered by a
famous book [93] of the evolutionary biologist Richard Dawkins2. Dawkins specu-
lated that games of survival are being played already on a microscopic level where

1Cooperate in the first round, then do whatever the other player did in the previous round. The
computer tournaments and the success of the strategy is discussed in [89, 90].

2Dawkins reformulated the theory of natural selection. Instead of thinking about organisms using
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quantum mechanics dictates the rules [43, 92]. And effectively it was recently dis-
covery that an RNA virus - a primitive but fundamental microbiological structure
- may also be engaged in a situation properly described by the prisoner’s dilemma
[94]. So effectively it might very well be, that after all life is just a . . .

genes to reproduce themselves, he imagined that ”our” genes build and maintain us, from the
perspective of molecules competing for limited space and resources to produce more of their
own kind.
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A.1 Detectors

Figure A.1: Reach-through APD Structure [79]

Figure A.2: Electronics circuit for the Bob detector module.
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Figure A.3: Temperature dependence of the dark count rates and the breakdown voltage
for the APD’s used in the Bob module
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A.2 Definitions & Explanations

Chicken Game

Like the Prisoner’s dilemma, the game of “chicken” is a model for a diverse range
of human conflicts.

The game of chicken came to public attention in the 1955 movie “Rebel Without
a Cause”, starring James Dean and Natalie Wood. James Dean plays Jim who is so
afraid of being a ’chicken’ like his father - a wimp, ineffectual and completely over-
shadowed by his domineering wife - that the very mention of the word in application
to himself drives him wild. Jim gets mixed up with the wrong crowd and has to
prove his worth in the pivotal scene of the movie: the ’chickie’ run. Buzz, the head
of the teens and Jim drive stolen cars to the brink of a cliff. The first one to jump
from the car is a chicken. Jim sees this as a point of honor that he cannot refuse.
The race is on and Buzz fails to jump since his leather jacket becomes caught on the
door handle and he plunges with his car into the ocean. The movie and the game
got a lot of publicity not only because it was perhaps the best of the three major
movies James Dean did but also because James Dean himself died aged twenty-four
in a car accident on a public highway in September 1955, shortly before the film’s
release, while on his way to a sports car meeting. In subsequent low-budget “juve-
nile delinquent” films, variations of the chicken game became almost an obligatory
scene.

Since in the movie game the pure strategic space is continuous and the payoffs
are discontinuous at the cliff’s edge, in game theory one translates the off-the-cliff
version into the abstract game of highway chicken [47]. Jim drives his hot rod south
down the middle of the road while Buzz drives north. As collision threatens each
driver - being aware of his reaction time and his car’s turning radius (assumed to
be identical for both drivers and cars) - must decide whether to Continue in the
middle or Swerve to the side [89].

The worst thing that can happen is for both players not to swerve and get killed.
If a player is the only one to continue and lets the other driver swerve he is covered
with glory while the other guy is “chicken” and loses face. Being chicken is the
next to the worst outcome - still better than dying. However, there is a cooperative
outcome if both players swerve and come out alive but no one can call the other
a chicken (it is assumed that to swerve means to swerve right; if one driver would
swerve right and the other one left they would both be dead and mortified).

The situation of the players in the Chicken Game can be described by the payoff
matrix in Tab. A.1.

Both players want to do the opposite of whatever the other is going to do. If
Jim knew with certainty that Buzz was going to swerve, he would drive straight
and if he knew Buzz was going to drive straight, he would want to swerve. Hence,
in pure classical strategies there exist two Nash Equilibria: Ŝ ⊗ Ĉ and Ĉ ⊗ Ŝ, but
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Buzz
HHHHHHsJ

sB S C

S (6,6) (2,8)
Jim

C (8,2) (0,0)

Table A.1: Payoff matrix in the Chicken Game.

they have the defect of being asymmetric. Unlike for the unique Nash equilibrium
in the Prisoner’s Dilemma, there is no way to find out which will be realized by the
players. Each player is hoping for a different asymmetric equlibrium result and the
outcome may not be an equilibrium point at all.

However, there is a Nash equilibrium in mixed classical strategies with expected
payoff1 $J = $B = 4.

To investigate the new features of the game, if superpositions of classical strate-
gies are allowed, the same sets of operations as in the Prisoner’s Dilemma can be
considered. A unique Pareto optimal solution emerges with payoff $J = $B = 6
for the two parameter set of operations and a focal equilibrium for the set of all
quantum mechanically allowed local operations with payoff $J = $B = 4, as the
mixed strategy in the classical game.

The classical chicken game was subject to detailed studies during the cold war
[89]. Bertrand Russell, the president of the Cambridge University Labour Club, saw
in chicken a metaphor for the nuclear stalemate in the nineteenfifties and describes
another version of the game now known as the “canonical” chicken.

Strategists of the RAND2 Corporation, to whom the Kennedy administration

1For the Nash equilibrium in mixed strategies the payoffs $J , $B and probabilities pαi , i = J,B,
α = S,C depend on the entries in the payoff matrix; e.g. for PCC,i = 0 we find the probabilities

pαi = 1
2 ∀i, α giving $J = $B = 4, while for PCC,i = −2 we get $J = $B = 14

3 with probabilities
pSi = 2

3 and pCi = 1 − pSi = 1
3 ∀i. Apparently, increasing the loss from crashes reduces the

equilibrium probability of continuing down the middle of the road. If the payoff for Ĉ ⊗ Ĉ
reaches or exceeds the payoff for being the chicken while the opponent continues we have a
different game where the only equlibrium is in pure strategies (Ĉ ⊗ Ĉ) - the game has become
the Prisoner’s dilemma!

2Project-RAND (a contraction of the term research and development) derives from “operations
research” conducted in World War II. It started in 1945 under special contract to the Douglas
Aircraft Company as an organization to connect military planning with research and devel-
opment decisions because it was realized that conventional military strategy was inadequate
as wars became more terrible and complex. In 1948 RAND became an independent nonprofit
organization “To further and promote scientific, educational, and charitable purposes, all for
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was receptive, pointed out that U.S. - Soviet conflicts were chicken dilemmas. Lead-
ers of both nations agreed that nuclear war was the worst possible outcome, but the
horror of a third world war did not make them cooperate to avoid it. The classic
instance of a political chicken dilemma is the Cuban missile crisis of October 1962
where both sides were tempted to threaten war. Either side hoped to convince the
other that it was serious, so they might back down in order to prevent global holo-
caust, since being exploited is better than war, or as Khrushchev quoted a Russian
saying: “It will be too late to cry over lost hair after your head is cut off.” Like
all applications of game theory to foreign relations, the identification of the Cuban
missile crisis with the game of chicken depends on some assumptions about what
would have happened. In this case, one has to assume that mutual rigidity would
have lead to (a chance of) nuclear war and that both sides would prefer loss of face
to the chance of war.

Battle of the Sexes

The Battle of the Sexes game is a non-zero sum two person static game of complete
information. Alice and Bob are trying to decide how to spend the saturday evening:

• Alice would like to attend the opera (O)

• Bob would like to watch the football match in TV (T)

• and both would be happier to stay together rather than apart.

The payoff matrix takes the form of table A.2 with α > β > γ.
Neither player can rationally eliminate one of his strategies and prefer the other,

hence there are no strictly dominated strategies. One finds two Nash equilibria in
pure classical strategies: O ⊗ O with payoffs $A = α and $B = β and T ⊗ T
with payoffs $A = β and $B = α. Introducing mixed classical strategies yields
a third Nash Equilibrium. If Alice chooses Opera with probability p = α−γ

α+β−2γ

(and Television with probability 1 − p) and Bob with q = β−γ
α+β−2γ

(Television with

probability 1 − q) their payoff sum up to: $A = $B = αβ−γ2
α+β−2γ

< β < α. Again the
theory fails to say which of the three Nash equilibria represents the real development
of the game.

the public welfare and security of the United States of America.” As they intended to make
major efforts on applications of game theory John von Neumann and John Nash became RAND
consultants. It was the first organization to be called a ”think tank”. They are best known
for “thinking about the unthinkable” and their works on the consequences of nuclear war,
’push-button’ warfare, the ’fail-safe’ protocol, nuclear proliferation and American second-strike
capabilities - or as a satirical folk song puts it: “they sit and play games about going up in
flames”. In recent years RANDs clients have included not only all branches of the U.S. military
community but also NASA, the National Institutes of Health, the Ford Foundation, the State
of California and both the New York and American Stock exchanges.
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Bob
HHHHHHsA

sB O T

O (α,β) (γ,γ)
Alice

T (γ,γ) (β,α)

Table A.2: Payoff matrix in the Battle of the Sexes.

Just as in the other presented games also for this one a new solution can be found
if quantum strategies and entanglement are allowed for, as shown in [41, 95, 96].

Density Matrices

Density matrices for common measureable two-qubit states in the H,V basis, with

|P 〉 = 1√
2
(|H〉+ |V 〉) |M〉 = 1√

2
(|H〉 − |V 〉)

|L〉 = 1√
2
(|H〉+ i|V 〉) |R〉 = 1√

2
(|H〉 − i|V 〉)
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|HH〉〈HH| =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 |V V 〉〈V V | =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




|HV 〉〈HV | =




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 |V H〉〈V H| =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0




|PP 〉〈PP | = 1
4




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 |MM〉〈MM | = 1

4




1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1




|PM〉〈PM | = 1
4




1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1


 |MP 〉〈MP | = 1

4




1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1




|LL〉〈LL| = 1
4




1 −i −i −1
i 1 1 −i
i 1 1 −i
−1 i i 1


 |RR〉〈RR| = 1

4




1 i i −1
−i 1 1 i
−i 1 1 i
−1 −i −i 1




|LR〉〈LR| = 1
4




1 i −i 1
−i 1 −1 −i
i −1 1 i
1 i −i 1


 |RL〉〈RL| = 1

4




1 −i i 1
i 1 −1 i
−i −1 1 −i
1 −i i 1




Partial Transposition

The partial transpose of a given state ρ is the transpose with respect to one of its
subsystems. For

ρ =
∑M

i,j

∑N
k,l〈i, k|ρ|j, l〉|i, k〉〈j, l| =

∑M
i,j

∑N
k,l〈i, k|ρ|j, l〉(|i〉a〈j|)⊗ (|k〉b〈l|),

with dimHa =M ≥ 2, dimHb = N ≥M and |i, k〉, |j, l〉 being the basis vectors, the
partial transpose of ρ with respect to subsystem a writes:
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ρTa =
∑M

i,j

∑N
k,l〈i, k|ρ|j, l〉|j, k〉〈i, l| =

∑M
i,j

∑N
k,l〈i, k|ρ|j, l〉(|j〉a〈i|)⊗ (|k〉b〈l|).

Although partial transposition is not a unitary operation, it preserves the hermitic-
ity.

Gaussian Beams

In wave optics light, propagating in the form of waves, is described by a scalar
wavefunction, representing any electric or magnetic field component. This complex
function of position and time, say E(x, y, z, t), describing an optical wave satisfies
the wave equation,

(∇2 − 1

c2
∂2

∂t2
)E(x, y, z, t) = 0. (A.1)

Since a general solution of the wave equation can only be found numerically one has
to find an analytical approximation. The electric field solution of a monochromatic
wave is a wavefunction with harmonic time dependence. In free space and within
the scalar approximation, where electromagnetic fields are assumed to be uniformly
(i.e. linearly or circularly) polarized, the wave can be written in the form ([51])

E(x, y, z, t) = u(x, y, z)ei(ωt−k(x,y,z)z) = Ẽ(x, y, z)eiωt. (A.2)

The paraxial wave equation

Obviously3 the complex amplitude, Ẽ(x, y, z), of an electromagnetic field distri-
bution (A.2), which is sinusodial in time, propagating in a uniform and isotropic
medium (e.g. in free space) has to satisfy the scalar time-independent Helmholtz
wave equation

(∇2 + k2)Ẽ(x, y, z) = 0, (A.3)

where k = ω
c
is the wavenumber.

The simplest solutions to the Helmholtz equation are plane and spherical waves.
Plane waves are given by E(r) = ue−ikr where u is the complex envelope, k

is the wavevector and r = (x, y, z). The wavefronts of E(r) are seperated in phase
by ∆(kr − φ(x, y, z)) = 2πn (with integer n), where φ(x, y, z) is the phase of the
complex envelope and hence they describe parallel planes, which are perpendicular to
the wavevector. The spacial distance between the planes is given by the wavelength,
λ = 2π/k.

A spherical wave originating at r = 0 has a complex amplitude E(r) = u
r
e−ikr.

In this case the wavefronts are concentric spheres centered about the origin.
If the wavefront normals make small angles (sin θ ≈ θ) with the axis of propaga-

tion, the wave is called a paraxial wave. The complex amplitude, E(r) = u(r)e−ikz,

3substituting (A.2) into (A.1)
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is a plane wave which is modulated by the slowly varying complex envelope. For an
optical beam in positive z-direction the primary spatial dependence of Ẽ(x, y, z) is
the exponential variation, e−ikz.

However, transverse plane waves are not adequate to describe the field dis-
tribution of transverse modes in laser systems. The beam’s complex scalar wave
amplitude, ũ(x, y, z), which describes the transverse amplitude and phase profile
of the beam varies slowly in x- and y-direction along the z-axis compared to the
e−ikz-variation of the plane wave for a narrow beam. The solutions ũ(x, y, z) of the
wave equation are localized near the z-axis and should have approximately spherical
phase fronts when they escape from the laser due to the boundary conditions in a

resonator with spherical reflectors (mirror curvature
!
= curvature of phase front) to

give satisfactory transverse modes.
More importantly for the paraxial approximation, the z-dependence of the wave

amplitude - caused mainly by diffraction and propagation effects - is small compared
to the optical wavelength and also compared to the transverse variations in x- and
y-directions. Hence the paraxial approximation writes | ∂2ũ

∂z2
| ¿ |2k ∂ũ

∂z
|, |∂2ũ

∂z2
| ¿ |∂2ũ

∂x2
|

and |∂2ũ
∂z2
| ¿ |∂2ũ

∂y2
|.

One can extract the propagation factor, e−ikz, and the complex amplitude is
given by

Ẽ(x, y, z) = ũ(x, y, z)e−ikz. (A.4)

Substituting this into the scalar wave equation and taking into account the parax-
ial approximation, i.e. the slowly varying z-dependence of ũ(x, y, z), we get the
paraxial Helmholtz equation

∂2ũ

∂x2
+
∂2ũ

∂y2
− 2ik

∂ũ

∂z
= 0, (A.5)

which has the same form as a two-dimensional Schrödinger equation (z=̂t) for a free
particle.

Validity of the paraxial approximation An optical beam can be considered as a
superposition of plane waves propagating at an angle θ to the z-axis. In the paraxial
approximation the angles θ are assumed to be small, so that sin θ ≈ tan θ ≈ θ. Hence
in a Taylor expansion of the complex scalar wave amplitude one can neglect the ∂2ũ

∂z2

terms for all plane wave components propagating at small angles in agreement with
the paraxial wave approximation.

Solution to the paraxial wave equation

The field distribution of a uniform spherical wave in the paraxial approximation
originating from a source point (x0, y0, z0) observed at (x, y, z) and propagating in
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A.2 Definitions & Explanations

z-direction4 can be written in the form

ũ(x, y, z) =
1

R(z)
e−iφ(x,y,z). (A.6)

R(z) = R0+z−z0 (with R0 = 0 for z0 = 0) is the radius of curvature of the spherical
wave at plane z increasing linearly with distance and e−iφ(x,y,z) (with φ(x, y, z) ∝

1
λR(z)

) is the phase variation across a transverse plane at fixed z.
To derive an exact solution of the paraxial wave equation with an amplitude

rapidly falling off with transverse distance, carrying finite total power across the
transverse plane and remaining (complex) Gaussian in profile at all z, one intro-
duces complex values for the source point coordinates (→ complex source point
approach, s. [51]). The spherical wave amplitude (A.6) has to satisfy the paraxial
wave equation for an arbitrary choice of source point coordinates and we can set
x0 = y0 = 0 and replace z0 by the complex source point z0 − q̃0 where q̃0 is an
arbitrary5 complex quantity. Hence we have to substitute the radius of curvature,
R(z), by its complex generalization q̃(z) = q̃0(z) + z − z0 and the paraxial spherical
wave (A.6) converts to the spherical-Gaussian wave originating from the complex
source point which can be written as

ũ(x, y, z) =
1

q̃(z)
e−ik

r2

2q̃(z) =
1

q̃(z)
e
− r2

w2(z)︸ ︷︷ ︸
amplitudefactor

e−ik
r2

2R(z)︸ ︷︷ ︸
phasefactor

, (A.7)

where r2 = x2 + y2 is the square of the distance of the point x,y from the axis of
propagation.6 This is the lowest order (fundamental) spherical-Gaussian beam solu-
tion of an infinite family of higher order solutions (e.g. Hermite-gaussian functions)
to the free-space paraxial wave equation.

The phase factor shows an imaginary quadratic transverse variation, corre-
sponding to a spherical wave with a real radius of curvature, R(z).7 For z = 0
the wavefronts are plane, i.e. R(z) → ∞, the minimum value of R is obtained at
z = zR and at larger distances R ≈ z.

The amplitude factor exhibits a real quadratic transverse variation giving the
Gaussian amplitude profile with a rapid transverse fall-off determined by the Gaus-
sian spot size, w(z) (Fig. 2.6). Hence the beam retains its gaussian shape, paraboloidal

4i.e. z − z0 is large compared to the transverse distances x− x0 and y − y0
5in 2.3.1 one chooses q̃0 to fullfill the ABCD law
6These expressions can also be derived by substituting a trial solution of the form ũ(x, y, z) =

A(z) ∗ exp(−ik r2

2q̃(z) ) into the paraxial wave equarion and solving the resulting differential
equation.

7Not important for our considerations but for the sake of completeness one has to include the
Guoy effect; an additional longitudinal phase shift, ψ(z) = tan−1(z/zR), of ±90◦ on either side
of the waist within the Rayleigh length (s.(2.35)) resulting in a larger phase velocity and spacing
between the phase fronts compared to a plane wave. Thus a phase front will shift forward by
half a wavelength when passing through the focal region.
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wavefronts which are spherical close the z axis, but the spot size (minimum occurs
at z=0) increases while propagating.
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