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Certifying entanglement of a multipartite state is generally considered a demanding task. Since an N
qubit state is parametrized by 4N − 1 real numbers, one might naively expect that the measurement effort of
generic entanglement detection also scales exponentially with N. Here, we introduce a general scheme to
construct efficient witnesses requiring a constant number of measurements independent of the number of
qubits for states like, e.g., Greenberger-Horne-Zeilinger states, cluster states, and Dicke states. For four
qubits, we apply this novel method to experimental realizations of the aforementioned states and prove
genuine four-partite entanglement with two measurement settings only.
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Introduction.—Entanglement is a fascinating feature of
strictly quantum nature. It was first studied for the bipartite
case [1,2] and has already been applied for first quantum
communication tasks like quantum cryptography and
quantum teleportation [3]. The generalization to multipar-
tite entanglement comes with a whole new set of features
providing, relative to separable states, information process-
ing advantages for quantum computation and simulation or
for quantum metrology. It is thus crucial to have tools at
hand which allow us to identify genuinely multipartite
entangled states [4–6].
Proving genuine multiparty entanglement is in general a

complex task. Full quantum state tomography (QST) can be
used for detecting and even for quantifying entanglement, but
requires the determinationof exponentiallymanyparameters.
Even when using simplified procedures [7–9], the effort is
still significant. Thus, the goal was to find a direct measure-
ment procedure for witnessing entanglement [5,10–13]. The
only systematic method known today for constructing
entanglement witnesses uses the fidelity relative to a chosen
reference state. However, depending on the state, this as well
leads to a rapidly increasing number of measurements
required to infer the fidelity. Remarkably, specifically for
the cluster and Greenberger-Horne-Zeilinger (GHZ) states,
witnesses based on the stabilizer formalism [14] have been
found incidentally which require only two measurements for
any number of qubits [15]. Still, a systematicmethod, also not
restricted to stabilizer states, is missing.
In this Letter, we introduce a constructive scheme to

derive efficient multipartite entanglement witnesses, i.e.,
witnesses which can be evaluated from only a very small
number of measurements. Our scheme employs basic
properties of operators and their expectation values to
construct witnesses for many relevant quantum states
which require only two measurement settings, independent
of the number of qubits. We show a way to enhance the
concept of finding measurements that are complementary

for separable states [16] by introducing weights and
providing the alternative scheme of testing violation of a
set of inequalities in order to further increase the sensitivity.
We demonstrate how to derive these efficient entanglement
criteria for several of the most prominent quantum states,
encompassing GHZ and cluster states, Dicke and W states,
and the multipartite singlet state.
Every quantum mechanical N-qubit state ρ is uniquely

described by its correlation tensor T,

ρ ¼ 1

2N

X
j∈I

Tjσj; ð1Þ

where the set I ¼ f0…00; 0…01;…; 3…33g labels all
indices j ¼ ðj1…jNÞ, ji ∈ f0; 1; 2; 3g of the correlation
tensor with σj ¼ σj1 ⊗ … ⊗ σjN and with Pauli matrices
σ0, σ1, σ2, and σ3. The correlation tensor elements (for short
called correlations) are given by Tj ¼ hσji ¼ Tr½ρσj�.
Since the eigenvalues of σj are �1, the correlations are
constrained to lie in the interval ½−1; 1� and consequently
T2
j ≤ 1. These constraints, together with the physicality

condition ρ ≥ 0 imply various bounds on the summed
squares of correlations, which are helpful for the con-
struction of efficient witness operators. Consider a set of n
pairwise commuting operators fσj∶j ∈ C ⊂ Ig. These
operators have common eigenstates, for which Tj ¼ �1

holds. Consequently, the sum of squared correlations is
bounded by

P
j∈CT

2
j ≤ n. On the contrary, for a set of

pairwise anticommuting operators, e.g., fσj∶j ∈ A ⊂ Ig,
the threshold is [16] X

j∈A
T2
j ≤ 1; ð2Þ

establishing a complementarity relation between the
correlations [17].
Separability.—Consider the bipartition (cut) B ¼ AjB

of a multipartite quantum system into parts A and B.
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Two operators given by σab ¼ σa ⊗ σb and σa0b0 ¼ σa0 ⊗ σb0
anticommute with respect to the bipartitionB if fσa;σa0g¼0
or fσb;σb0 g¼0, i.e., if they locally anticommute on A
or on B. According to Ref. [16] this property is
called cut-anticommutativity or, more specifically,
AjB-anticommutativity. Since for states separable with
respect to B the correlation tensor factorizes, Tab ¼ TaTb,
these states fulfill

T2
ab þ T2

a0b0 ≤SEP
B

1: ð3Þ
However, cut-anticommuting operators can also commute,
i.e., ½σab;σa0b0 � ¼ 0, allowing the common (entangled) eigen-
states of σab and σa0b0 to exhibit T2

ab þ T2
a0b0 > 1. Therefore,

violationofEq. (3) rules out separabilitywith respect to cutB.
Testing entanglement.—To prove genuine multipartite

entanglement of a state, Eq. (3) has to be violated for every
possible bipartition.One startswith a listfσjg of all operators
with nonvanishing expectation value, Tj ≠ 0 (all nonvanish-
ing correlations). For the construction of the efficient
entanglement criterion for a bipartition B, one then chooses
from that list two operators which are mutually commuting,
but also cut-anticommuting relative to the bipartition AjB.
One repeats this, until all bipartitions are tested.
The scheme becomes highly efficient if the correlation

values of several σj can be obtained from the same meas-
urement setting. In detail, this means that one makes use
of the observation that from a single measurement setting
Mk with k ¼ ðk1; k2;…; kNÞ and ki ∈ f1; 2; 3g labeling
the local Pauli measurements, all 2N correlations Tj with
j ∈ fð0; 0;…; 0Þ; ð0; 0;…; kNÞ;…; ðk1; k2;…; kNÞg can be
inferred. Depending on the symmetry of the state, two
measurement settings can suffice to prove genuine multi-
partite entanglement if one finds for each bipartition oper-
ators in the set that are commuting, but cut-anticommuting
for the given bipartition.
Combined entanglement witness.—Combining the above

criteria into a single witness facilitates the practical appli-
cation (only a single value has to be calculated), though at
the expense of a lower sensitivity, i.e., a reduced robustness
against (white) noise. Compared to Ref. [16], the sensitivity
can be considerably improved by using a weighted sum,

W ¼ 1

G0

X
j∈S

vjT2
j ≤BISEP

G
G0

; ð4Þ

where S ⊂ I labels the set of correlations that can be
determined by the given set of measurements and where
≤BISEP denotes that the inequality is valid for all biseparable
states. The weights vj and the (normalization) constants G
(G0) are determined as follows:
(i) Depict the operators defined by S as vertices of a

graph (anticommutativity graph).
(ii) Assign weights vj > 0 to the vertices.
(iii) Choose bipartition Br and connect all vertices for

which the corresponding operators cut-anticommute by
edges. (If all operators indexed by S mutually commute, no

edges will occur.) Distribute values cðmÞ
j ¼ f0; 1g among

vertices under the constraint that any two “1’s” are not
connected by an edge and calculate for each of the m

possible distributions of 1’s the sum GðmÞ
r ¼ P

j∈Sc
ðmÞ
j vj.

The case of no partition will be labeled by r ¼ 0. Repeat
step (iii) for all bipartitions Br.
(iv) Every choice of weights vj in Eq. (4) defines a

witness with G ¼ maxr>0;mG
ðmÞ
r and G0 ¼ maxmG

ðmÞ
0 . The

ratioG=G0 determines the noise robustness of the criterion.
To optimize the witness in terms of its noise robustness, one
has to choose the weights vj according to argminfvjgG=G0.
Example.—Let us consider the four-party GHZ state

1=
ffiffiffi
2

p ðj0000i þ j1111iÞ, whose nonvanishing correlations
are listed in Table I. As one can see, the measurement of the
single setting M3333 provides seven correlations with
squared value 1. Since the operators of these correlations
exhibit the same cut-anticommutation relation with any
operator corresponding to the other eight correlations of
Table I, the second measurement can be chosen arbitrarily
out of those remaining eight. For example, the choice
M1221 for the second measurement setting results in
the set of operators fσ3333;σ3300;σ0033;σ3003;σ0330;σ3030;
σ0303;σ1221g, i.e., S ¼ f3333; 3300;…; 1221g.
States that are, e.g., AjBCD-separable fulfill, according

to Eq. (3),

T2
3333 þ T2

1221 ≤ SEP
AjBCD

1: ð5Þ
Since σ1221 not only AjBCD anticommutes with σ3333, but
also with σ3030, σ3003, σ3300 from our list, a natural choice is
to average over the expectation values of those four
possibilities. Nonseparability against the partition AjBCD
can then be detected with

WGHZ
AjBCD ¼ 1

2

�
1

4
ðT2

3030 þ T2
3003 þ T2

3300 þ T2
3333Þ þ T2

1221

�

≤ SEP
AjBCD

1

2
; ð6Þ

where the additional normalization constant of 1=2 is
introduced to ensure that WGHZ

AjBCD ¼ 1 holds for the ideal

GHZ state, where all squared expectation values are one.
The criteria for the remaining six bipartitions are derived
analogously. For the list of criteria for the four-qubit Dicke,
singlet, and W state see the Supplemental Material [18].
To derive a combined entanglement witness for the GHZ

state, we use all eight operators labeled by S (see Table I).
We assign equal weights to the seven operators obtained

TABLE I. All nonvanishing correlations of the four-qubit GHZ
state. The correlations in the first two rows can be infered from
the measurement setting M3333 and the last correlation is
obtained from the setting M1221.

T0000 1 T0033 1 T0303 1 T0330 1
T3003 1 T3030 1 T3300 1 T3333 1
T2112 −1 T2121 −1 T2211 −1 T2222 1
T1111 1 T1122 −1 T1212 −1 T1221 −1
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from the measurement setting M3333, i.e., α ¼ v3333 ¼
v0033 ¼ � � � ¼ v3300 since these mutually commute and
behave similarly with regard to the cut-anticommutation
relations with σ1221 for the different bipartitions. Theweight
of the remaining operator will be denoted by β ¼ v1221.
From the anticommutativity graph (one without any edges)
one obtains G0 ¼ 7αþ β. Depending on the distribution of

1’s, the sums for all bipartitions are either Gð1Þ
r ¼ 7α or

Gð2Þ
r ¼ 3αþ β, see Fig. 1. For optimal noise robustness,

one has to find the weights vj by minimizing G=G0. The

minimum is achieved for Gð1Þ
r ¼ Gð2Þ

r , thus 7α ¼ 3αþ β,
which leads, by arbitrarily setting α ¼ 1, toG0 ¼ 7αþ β ¼
7þ 4 ¼ 11 and G ¼ 7α ¼ 3αþ β ¼ 7. Then, the opti-
mized two-measurement witness for the GHZ state reads

WGHZ ¼ 1

11
ðT2

3333 þ T2
3300 þ T2

0033 þ T2
3003 þ T2

0330

þ T2
3030 þ T2

0303 þ 4T2
1221Þ ≤BISEP

7

11
: ð7Þ

Analogously, for the cluster state jC4i ∝ ðj0000i þ
j0011i − j1100i þ j1111iÞ one obtains the witness
WC4 ¼ 1

6
ðT2

3300 þ T2
3011 þ T2

0311 þ T2
1130 þ T2

1103 þ T2
0033Þ

≤BISEP
2

3
: ð8Þ

For details on the derivation, see the Supplemental
Material [18].
Extensions.—Similar criteria can also be formulated for

more qubits. The two-measurement-witness for theN-qubit
GHZ state is based upon the measurements of M3333…3

and, e.g., M2211…1 since one is able to find operators
whose expectation value can be determined by those
measurements such that Eq. (3) can be violated for each
bipartition. Then, genuine multipartite entanglement is
detected by violation of

WGHZN ¼ 1

2N−1 þ 2N−2 − 1
½T2

3333…3 þ T2
0033…3

þ T2
0303…3 þ � � � þ T2

33…300 þ 2N−2T2
2211…1�

≤BISEP
2N−1 − 1

2N−1 þ 2N−2 − 1
→

N→∞

2

3
: ð9Þ

The extension of the criterion for the N qubit cluster
state j ~CNi (N even) is based on the correlations fTjjj ∈
S1313…13∪S3131…31g where the set Sk indexes all non-
vanishing correlations of the cluster state that can be
determined from the measurement setting Mk. Please note
that j ~C4i as defined via the stabilizer formalism [14] equals
jC4i up to LU transformations. Genuine multipartite entan-
glement of j ~CNi is then identified by violation of

W ~CN ¼
P

j∈S1313…13
T2
j þ

P
j∈S3131…31

T2
j

2ð2N=2 − 1Þ

≤BISEP
2N=2−1 þ 2N=2 − 2

2ð2N=2 − 1Þ →
N→∞

3

4
: ð10Þ

Analysis of experimental data.—In order to experimen-
tally demonstrate the applicability of our new entanglement
criteria, we prepare a series of superpositions of GHZ and

(a) (b)

FIG. 1. The operators used to construct the witness WGHZ, cf.
Table I. As an example, the cut-anticommutation relations for the
cutABjCD are indicated by dashed lines. One realizes that for each
bipartition four of the seven operators obtained from the meas-
urement of setting M3333 cut-anticommute with σ1221. Thus, the
same weights α are assigned to them, while σ1221 is weighted with
β. Depending on the distribution of 1’s, the sum for this bipartition

is found to be either (a) ~Gð1Þ
r ¼7α or (b) ~Gð2Þ

r ¼3αþβ. The best
weights are obtained when the two assignments are equally good,
i.e., 7α ¼ 3αþ β.

(a)

(b)

FIG. 2. Schemeof the experimental setup. In a first step (a) a type-
I SPDC source together with a half wave plate (HWP) at angle θ is
used to prepare states of the form (jHiðcos2θjHiþsin2θjViÞþ
eiϕjVið−cos2θjViþsin2θjHiÞ)= ffiffiffi

2
p

. The phase ϕ can be set by a
birefringent yttrium-vanadate crystal (YVO4). Interference filters
(F) are applied for spectral filtering and spatial filtering is performed
by coupling into single mode fibers (Supplemental Material [18]).
In a second step (b), the state preparation is completed by increasing
the Hilbert space by polarizing beam splitters (PBSs). Overlap at a
beam splitter and polarization analysis allows us to measure all
Pauli settings σi and to perform QST. YVO4 crystals and glass
plates (G and φ) inside the interferometer are used for phase and
path length compensation, respectively.
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cluster states with variable weights. Different linear optical
setups to prepare either four-qubit GHZ [21] or cluster
states [22] are known. To have the flexibility to prepare
superpositions of GHZ and cluster states in a single setup,
we resort to a two photon experiment using two degrees of
freedom per photon, namely polarization and path [23].
This approach enables one to prepare states with both high
fidelity and high count rates. From now on, the computa-
tional basis states j0i and j1i are encoded either in
polarization or in the path degree of freedom, i.e., j0i →
jHi and j1i → jVi for horizontal (H) and vertical (V)
polarization and j0i → jai and j1i → jbi for paths a and b.
The photon source shown in Fig. 2(a) uses spontaneous

parametric down-conversion and allows us to prepare
states of the form ðjHiðcosð2θÞjHiþsinð2θÞjViÞþeiϕjVi
(sinð2θÞjHi−cosð2θÞjViÞ)= ffiffiffi

2
p

(see the Supplemental
Material [18] for details). In order to achieve the intended
four-qubit state, coupling to the path degree of freedom is
required. Thus, the polarization dependence of the output of
a polarizing beam splitter is used; i.e., photons are trans-
formed as jHi → jHai and jVi → jVbi with a and b
denoting the corresponding output modes of the PBS, see
Fig. 2(b). Consequently, four-qubit states parametrized by θ
and ϕ, jΨðθ;ϕÞi¼ðcosð2θÞjHaHaiþsinð2θÞjHaVbiþ
eiϕsinð2θÞjVbHai−eiϕcosð2θÞjVbVbiÞ= ffiffiffi

2
p

, are obtained.
Prominent members of jΨðθ;ϕÞi are for example the GHZ
states ðjHaHai ∓ jVbVbiÞ= ffiffiffi

2
p

for θ ¼ 0 and ϕ ¼ 0, π,
respectively, or the cluster states ðjHaHai þ jHaVbi �
jVbHai ∓ jVbVbiÞ=2 obtained fo r θ ¼ π=8 and ϕ ¼ 0, π.
The prepared states are characterized by means of QST,

proving full control of the experimental apparatus. This canbe
achieved with an interferometer setup as shown in Fig. 2(b),
overlapping the modes a and b together with a polarization
analysis and coincidence detection in the outputs.
Experimental results.—Thirteen states were prepared

with ϕ ¼ π and θ being increased from 0 (GHZ) to π=8
(cluster) and to π=4 (GHZ0) in equidistant steps. The
coincidence rate was approximately 100 s−1 with a meas-
urement time of 40 s for each basis setting, resulting in

3700–4400 counts per setting and a measurement time of
about 12 h to perform QST for all states. A measure for the
quality of a prepared state ϱexp with respect to a pure target
state jψi is the fidelity F ¼ Trðϱexpjψihψ jÞ. For the GHZ
state, we observed a fidelity of F ¼ 0.958� 0.004, while
for the cluster state it was F ¼ 0.962� 0.003. For the
other states, see Table IV in the Supplemental Material [18].
Genuine four-partite entanglement could be tested using

two measurement settings only. Let us start to determine the
witnesses for the GHZ state from measuring two settings
M3333 and M1221. The values of the respective measured
correlations (Table III in the Supplemental Material [18])
lead to a violation of all seven criteria by at least 56
standard deviations for all cuts, see Table II. Also, the
combined criterion WGHZ ¼ 0.916� 0.005 > 7

11
certifies

genuine four-partite entanglement. For the cluster state,

TABLE II. Experimental values of the individual criteria and combined witnesses for the considered states. All values for a specific
bipartition are clearly above the threshold of 1=2, indicating genuine four-partite entanglement in all cases. The thresholds for the

combined criteria are 7=11 (GHZ), 2=3 (cluster), 4=5 (Dð2Þ
4 ), and 3=5 (Ψ4) respectively. The Dicke state cannot be significantly proven to

be genuinely four-partite entangled by means of the combined witness, see Supplemental Material [18]. Hence, one has to resort to the
individual criteria in this case.

Partition jGHZi jC4i jDð2Þ
4 i jΨ4i

AjBCD 0.894� 0.007 0.922� 0.006 0.819� 0.013 0.804� 0.019
BjACD 0.906� 0.006 0.940� 0.004 0.819� 0.013 0.804� 0.019
CjABD 0.906� 0.006 0.940� 0.004 0.819� 0.013 0.804� 0.019
DjABC 0.906� 0.006 0.928� 0.006 0.819� 0.013 0.804� 0.019
ABjCD 0.904� 0.006 0.922� 0.006 0.627� 0.013 0.608� 0.017
ACjBD 0.906� 0.006 0.948� 0.004 0.620� 0.013 0.594� 0.021
ADjBC 0.901� 0.006 0.943� 0.004 0.625� 0.013 0.622� 0.021
Combined 0.916� 0.005 0.940� 0.004 0.801� 0.017 0.683� 0.014

FIG. 3. The entanglement criterion for the GHZ states allows us
to detect most of the superpositions of GHZ and the cluster state
to be genuinely four-partite entangled (red, starting at 0.92)
whereas the criterion for the cluster state detects states around
θ ¼ 22.5° to be genuinely four-partite entangled (blue, starting at
0.33). States within the gray shaded areas can be detected to be
genuinely four-partite entangled by means of both criteria. The
solid lines show the theoretically expected values for the target
states jΨðθ;ϕÞi mixed with white noise such that on average the
fidelities correspond to the measured values.
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according to our entanglement criterion, the measurement
settings M1133 and M3311 were used (see Supplemental
Material [18]), resulting in WC4 ¼ 0.940� 0.004 > 2

3
for

the combined criterion.
Using the combined witnesses, we analyze the entangle-

ment for all states jΨðθ;ϕÞi (Fig. 3). As can be seen, 10 of
13 states can be detected as genuinely four-partite
entangled by the criterion WGHZ, the 6 states close to
the cluster state can be determined by means ofWC4 . Some
states can be shown to be truly four-partite entangled by
means of both criteria as both are above their respective
threshold. Genuine four-partite entanglement could be

proven with experimental data of the Dicke state jDð2Þ
4 i

[24] and the singlet state [25], see Table II. For more details
see the Supplemental Material [18].
Conclusion.—We have introduced a novel scheme for

the systematic construction of entanglement witnesses,
which need a minimal number of measurements for their
evaluation independent of the number of qubits. We believe
that such a minimal multipartite entanglement detection
will become a handy diagnostic procedure as it is fast and
simple. An interesting question is what other states can
reveal their multipartite quantum correlations in two
measurements. Another challenge is to find even stronger
criteria, which, by possibly going to few more measure-
ments, will detect multipartite entanglement with a higher
robustness against noise.
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