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Abstract: We present a fully integrated, ready-for-use quantum random
number generator (QRNG) whose stochastic model is based on the ran-
domness of detecting single photons in attenuated light. Weshow that often
annoying deadtime effects associated with photomultiplier tubes (PMT)
can be utilized to avoid postprocessing for bias or correlations. The random
numbers directly delivered to a PC, generated at a rate of up to 50 Mbit/s,
clearly pass all tests relevant for (physical) random number generators.
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1. Introduction

Random numbers are essential for a number of applications starting from lottery games, crypto-
graphic applications such as generation of secure keys, or random numbers for secure personal
identification, all the way to numerical simulations in physics. When calculated by algorithmic
generators they are fully deterministic and necessarily exhibit a huge but finite period. Though
they are quite frequently employed, care has to be taken for many applications [1, 2]. On the
contrary, physical random number generators (RNG) avoid periodicity typical in algorithmic
ones as their output results from generically stochastic processes. Measurements sample these
processes pointwise in time, for example the Johnson noise in a resistor [3], the telegraph signal
deduced from noisy Zehner diodes [4] or, more recently in an optical implementation, the phase
noise fluctuation of a laser system [5, 6]. However, according to the laws of classical physics
all these sources of noise are governed by perfectly deterministic dynamics. Only the complex-
ity of the often chaotic evolution makes it impossible to predict the bit sequence with today’s
technology. Quantum physics provides inherent randomnessand nondeterminacy. First designs
of quantum random number generators used the spontaneous decay of radioactive nuclei as a
non-deterministic quantum process [7]. Yet clearly photonic implementations are the tool of
choice, as well developed optical components enable reliable and fast generation of random
bits. First optical setups [8, 9] used the randomness of the detection of a single photon behind
a beamsplitter. The registration of the photons in one or theother output of the beamsplitter
was associated with the bit values ’0’ or ’1’, respectively.In these experiments different detec-
tion efficiencies of both detectors or the imperfect splitting ratio of the beam splitter lead to a
preference of ’0’ or ’1’ and dead time effects caused correlations between consecutive bits. To
remove the resulting bias and correlations, manipulation of efficiencies, post-processing algo-
rithms and reduction of the sampling rate had to be used, which all significantly decreased the
output rate. More recently a variaty of QRNGs was developed using different types of quantum
randomness [8, 10, 11, 12, 13, 14, 15]. They all exhibit specific advantages, but often also one
or the other disadvantage like low data rates, poor quality of raw random numbers either due to
the bias or correlations along the bit sequence, and/or complex implementations. It should be
also emphasized, that the standard test suites have to be used with care since they usually are



Fig. 1. Schematic of the setup (left) and picture of the fully integrated quantum random
number generator (right). The main components are a light emitting diode (LED) mounted
on the entrance window of a photomultiplier tube (PMT). The electrical pulses from the
PMT are amplified (AMP) and fed into a threshold discriminator (ST). The signals are
counted and processed by the FPGA, the resulting random bits are transferred to a PC via
a USB connection. The total dimension of the housing is 22x16x8 cm3.

not optimized to detect typical problems of (quantum) physical RNGs such as bias, short time
fluctuations, correlations and dropouts [16, 17]. Ultimately, the quantumness of random num-
ber generators might be certified in a device independent manner by Bell’s theorem, currently
though only at very low rates [18].

Here we present an optical QRNG, whose randomness is based onthe very principles of
quantum physics. The compact setup consists of a light source with stabilized intensity attenu-
ated to the single photon level and one single photon detector. The detection events are counted
during a sampling time intervalτs and are interpreted as ’0’ for an even number of counts,
whereas an odd reading corresponds to ’1’. According to fundamental laws of quantum optics
the probability distribution of the number of photons in a sampling interval should follow a
Poissonian distribution with meanµ for a constant intensity light source [19], fully analogous
to radioactive sources for lowµ . This fact would cause a considerable bias between the num-
ber of ’0’s and ’1’s in the random bit sequence. However, as wedemonstrate below, dead time
effects of the photomultiplier together with the read-out electronics allow to eliminate the bias
even for very fast generation of random bits. In addition to passing standard test suites [20, 21]
for the evaluation of a physical random number generator [16] a stochastic model is required
[17, 4]. Based on the concept outlined above here we describethe essential ingredients of such
a model as well as the relevant tests of our implementation, clearly showing its suitability as a
high rate optical QRNG.

2. Principle and setup

In the optical setup (Fig. 1) the constant light source is provided by a light emitting diode
(LED) driven in cw-mode with digital feedback stabilization to about 1 ‰. The photon dis-
tribution emitted by the LED could be influenced by the Coulomb blockade effect inside the
p-n-junction of the LED [22, 23], but, given the very weak coupling to the detector on the order
of 10−8, this effect can be neglected and the resulting distribution of photons falling on the
detector is essentially Poissonian [24, 25]. To achieve high rates of random numbers we use
a photomultiplier tube (PMT) instead of often used avalanche photodiodes (APD), as the long
dead time of the latter on the order of 50−1000 ns, characteristic for Geiger-mode operation,
would significantly reduce the rate of random bits. Alternatively one might consider self differ-
encing readout of APDs [26]. A PMT on its own has no such dead time in the single photon
detection regime. There, the generation of a photoelectronand its subsequent amplification in
the electron multiplier stages is in principle independentfrom any preceding processes. Yet,



the time of flight distributions of the photoelectrons and ofthe secondary electrons inside the
PMT-module lead to an electrical pulse width on the order of afew nanoseconds (see inset in
Fig. 2). A threshold discriminator used to convert the analog output pulse of the PMT into a
digital signal can distinguish two pulses only, if they are separated by about the pulse width.
This leads to an effective dead timeτd, which even isextendablein the high intensity regime
where more and more pulses start to overlap [27]. In order to finally produce the random bits the
output of the discriminator circuit is fed into an FPGA logic(Spartan 3, clock speed 50 MHz).
There, the counter, the periodic sampling procedure and on-the-fly functionality tests [17, 4]
are implemented, and the random bits are transmitted to a PC via a USB connection.

Let us analyze the consequences of the dead time effects on the performance of the QRNG.
For fully independent detection events with a mean rate ofµ within the sampling intervalτs,
the probability to registern clicks is given by a Poisson distribution (Fig. 2)

P(n,µ) =
µn

n!
e−µ . (1)

This distribution becomes modified when using a PMT. Due to the (extendable) dead time
the initially Poissonian distribution of absorbed photonsis significantly distorted by a factor
depending on the mean number ofregisteredeventsµr and the ratio between sampling timeτs

and dead time of the PMTτd. It is given by [27, 28]
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Poisson extendable dead time modification
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being the maximum detectable number of photons within the time intervalτs. Figure 2 displays
the change in the distribution relative to the Poisson distribution if the number of counts is close
to K. While the mean decreases fromµ to µr = µ ·exp(−µτd/τs) the probability for obtaining
higher number of events is drastically reduced.

As the output of the QRNG results from an even/odd number of detection events within the
sampling time interval, any change in the distribution of counts will influence the statistics of
the random bits, and can cause artefacts, most remarkably bias or correlations. The probability
for the random bit ’0’ (p0) and ’1’ (p1) can be calculated from Eq. (2). A biasb results from an
unequal number of ’0’s and ’1’s and is given by

b =
1
2
− p1 =

1
2
−

∞

∑
n=1,3,...

P(n,µ). (3)

Clearly, the asymmetry of the Poisson distribution resultsin a bias, which only slowly reduces
with increasing mean photon number. Thus, for this type of QRNG, postprocessing or sampling
over longer times would become necessary. Both measures reduce the output rate of random
bits. The dead time modified distribution Eq. (2), however, exhibits significantly different sym-
metry properties. Figure 3 compares the bias Eq. (3) resulting from the modified distribution
Eq. (2) with the one due to a Poisson process. We observe that the bias of the modified distribu-
tion rapidly drops to and oscillates around 0, and is smallerby orders of magnitude over a wide
range of mean number of detections. In the implementation ofthe generator this enables one
to choose high rates with negligible bias and without serious sensitivity on fluctuations of the
illumination intensity.



Fig. 2. Normalized distributions of detected photon numbers (calculated).The black line
shows the distribution for a Poisson process with meanµ = 4.8, i.e. without considering
dead time effects. The red graph shows the expected distribution for an (extendable) dead
time of the PMT ofτd = 2.7 ns and a sampling interval ofτs = 20 ns. This results in a
strongly modified distribution, now with a meanµr = 2.51 (see text). Lines are guide to
the eyes. The inset exhibits the origin of the extendable dead time, where overlapping PMT
pulses are not resolved anymore by the threshold electronics.
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3. Evaluation and tests

Physical RNGs require new evaluation methods particularlyin order to monitor the continuity
of the stochastic process [16, 17]. For that purpose online tests for a coarse functionality in-
spection [16] are implemented in the FPGA logic and regularly performed on strings of 1 Mbit
at intervals of one minute. These tests include the monobit-test and a chi-square test analyzing
bias and statistics of 4-bit patterns, respectively, as well as a total-failure test. So far no excess
fluctuations or degradation in the quality of the random bitswas observed by these test routines.

To evaluate the performance of the actual implementation wehave first analyzed the depen-
dence of the bias on the mean number of detections (Fig. 4a) using 8 Gbit bit strings in order to
obtain a statistical uncertainty as small as 3.2 ·10−5 (dashed line). For sampling time intervals
τs of 20,40 and 80 ns these measurements are compared to the theoretical predictions. From
these measurements also the minimal dead timeτd was extracted to beτd = 2.7 ns by fitting
the bias Eq. (3) to the data points.

The experimental result shows good agreement with the theoretical predictions and the ef-
fect of the extendable dead time reducing the bias was clearly verified. At higher detection rates
(µr/τs) some deviation was caused mostly by the fact that this rate isbeyond the specifications
of the PMT (< 50·106 events/s). Nevertheless, operating the QRNG around the first zero cross-
ing of b enables one to obtain a performance consistent with what is to be expected for finite
samples.

In addition, an important parameter of random numbers is theinterdependence between con-
secutive bits. Contrary to algorithmic ones, physical random number generators are particularly
susceptible to short time fluctuations, which easily can cause correlations. For that reason a
dedicated analysis of the serial correlation coefficientSSCl depending on the bit distancel of
a bit sequenceb1 . . .bN [29] has to be performed in addition to applying conventional random
number test suites.

The correlation analysis of a 40 Gbit random bit string takenat a sampling interval of 20 ns
and a mean photon number ofµr = 1.41 is shown in figure 4b. For all bit distancesl we observe
small values below 2· 10−5. This fully complies with the statistical predictions as, albeit the
magnitude of this sample, there are finite size effects whichcause fluctuations of theSCCl ,
even for perfectly uncorrelated data of the same magnitude.

For further evaluation, bit strings of 1 Gbit obtained at a rate of 50 Mbit/s were analysed
with two batteries of statistical tests: The “Statistical Test Suite” (STS) [20] from NIST and the
“DieHarder” (DIE) test suite [21] for the same operating parameters as before.

The STS battery consists in total of 15 independent tests. Each individual test, resulting
in p-values evaluated on 1 Mbit substrings, is performed 1000 times. A p-value gives the
probability that a perfect random number generator would produce the actual one or a worse
result. A final χ2 test is applied on the p-value distribution of each individual tests which
results in a total p-value (see Fig. 5). In order to appraise these results a significance level
α is chosen. A typical value for this parameter isα = 1%, (labeled by the black line in Fig.
5). P-Values above this significance level indicate that thetest is passed by the bit sequence
generated by the QRNG.
The “DieHarder” battery of tests is a collection of 19 individual tests. Unlike in the STS tests,
here a final Kuiper Kolmogorov-Smirnov Test [30] is performed giving p-values for each test
separately. Again, the same level of significance is appliedalso to these results. The p-values
from all tests are clearly above the significance level and therefore all the tests of the two test
suites analysing the randomness of the output of our QRNG arepassed.
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Fig. 5. Typical results of the standard statistical test suites STS (a) and Dieharder(b) for
a typical sequence of 40 Gbit. Without processing, the p-values are routinely above the
significance level confirming the quality and the reliability of the QRNG



4. Conclusion

In this contribution we have presented a ready-for-use random number generator, whose ran-
domness directly originates from the randomness of quantumphysics. Remarkably, the usually
quite irksome dead time effects of a PMT turned out to be very positive for the performance
of the QRNG. They significantly reduced the bias value of the random bits and enabled stable
operation at very high rates. The implementation as a compact setup directly connected to
a PC via a USB interface yielded a random bit-stream at a unprecedented rate of 50 Mbit/s,
which was collected and analysed continuously over severaldays without any variation of the
properties of the random bits observed. The random bit strings obtained routinely passed all
the conventional test suites as well as on-the-fly monitoring. In particular, we could confirm the
essential elements of a stochastic model for this QRNG and obtained pair correlations and the
bias within the statistical limits. The system is easily scalable to even higher rates by simply
implementing a multi-channel photomultiplier tube, thereby forming the ideal equipment for
today’s demanding applications such as numerical simulations, conventional cryptography, or
novel, high rate quantum cryptography systems.
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